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Introduzione 

Descrizione e finalità della ricerca 

Nel corso dell'ultimo decennio la branca di ricerca relativa alla 

"computer vision" ha sviluppato metodologie robuste ed efficienti nel campo 

dell'estrazione dell'informazione tridimensionale a partire da una o più 

immagini di una scena reale. L’esperienza di ricerca ha avuto il fine di 

sviluppare applicazioni pratiche di ricostruzione tridimensionale automatica 

di siti architettonici e di oggetti tridimensionali in generale. 

Partendo da una serie di immagini di una stessa scena reale, acquisite da 

telecamera o fotocamera non calibrate, si applicano algoritmi di 

autocalibrazione e ricerca dei punti all'infinito che caratterizzano le 

proiezioni prospettiche della scena. In maniera robusta, anche da poche 

immagini, è possibili risalire così ai parametri intrinseci di ciascuno dei 

dispositivi utilizzati per l'acquisizione ed avere delle prime stime delle loro 

posizioni relativamente alla scena ripresa. Utilizzando algoritmi di 

estrazione di punti di interesse sulle singole immagini (corner detector, line 

detector, etc.) , si cercano in maniera automatica corrispondenze tra le 

diverse immagini al fine di determinare e caratterizzare la geometria 

epipolare che lega. Si ottengono così delle prime stime delle matrici di 

proiezione di ogni vista consentendo, tramite la tecnica della triangolazione, 

di risalire all'informazione tridimensionale. 

La robustezza del metodo è ottenuta applicando inoltre tecniche di 

ottimizzazione che in maniera iterativa permettono di minimizzare gli errori 

di ricostruzione e di trovare ulteriori corrispondenze tra le immagini 

sfruttando ad esempio la vincoli di parallelismo, perpendicolarità e planarità 

(vincolo omografico) tipici di scene architettoniche. Alle informazioni 

tridimensionali ottenute dalle immagini della scena si possono aggiungere 

ulteriori dettagli utilizzando vincoli ricavati da piante o introdotti dall'utente 

del software di ricostruzione. 

Infine, estraendo la tessitura dalle immagini a disposizione e traducendo gli 

elementi geometrici ricostruiti in formato VRML, è possibile visualizzare ed 

esplorare la scena e gli oggetti ricostruiti tramite browser munito di apposito 

plug-in (facilmente reperibili ed installabili). 

 

Risultati ottenuti 

Fornire ricostruzioni tridimensionali di oggetti di interesse storico, di 

interi siti archeologici, di ambienti museali, etc, e rendere disponibili i 

risultati di tali elaborazioni anche attraverso il Web e la VRO. 
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Parte I 
 

Visione Artificiale 
 

Geometria proiettiva. 
 

1.1 Modello della telecamera. 
 

Un’immagine rappresenta la mappatura tra punti tridimensionali e 

punti su un piano bidimensionale attraverso una proiezione centrale. Il 

dispositivo di acquisizione (telecamera, macchina fotografica o altro) può 

essere modellizzato in maniera semplice utilizzando la rappresentazione che 

prevede che tutti i raggi luminosi determinanti la formazione dei punti 

sull’immagine passino tutti per un unico punto per poi intersecare il piano 

dell’immagine (modello “pinhole”). Tale intersezione rappresenta per 

l’appunto la proiezione centrale del punto tridimensionale. Utilizzando le 

coordinate omogenee possiamo esprimere il processo proiettivo tramite la 

seguente relazione: 

 

λ ŵ = K [ R | t ]  X^ (1.1.1) 

 

Dove ŵ  è il vettore  contenente  le  coordinate omogenee del pixel [u v 1] T, 

X^ è il vettore 4x1 con le coordinate omogenee del  punto  tridimensionale [X 

Y Z 1]T. R è la matrice 3x3 che individua l’orientazione della telecamera, 

mentre t il vettore 3x1 la sua traslazione. Infine λ è uno scalare e K la matrice 

3x3 dei parametri intrinseci della telecamera (matrice di calibrazione) che ha 

la seguente forma. 
 

 x s 

K 
 
0  y 

 0 0 

u0  
 

0  

1  

 
(1.1.2) 

 

 

Il modello pinhole assume che le coordinate dell’immagine siano 

coordinate euclidiane aventi scale uguali in entrambi le direzioni degli assi. 

Nel caso di una comune telecamera con sensori CCD, i fattori di scala 

(eventualmente differenti) sono introdotti attraverso i coefficienti mx ed my, 

espressi in pixel per unità di distanza. Se f è la lunghezza focale in metri, 

allora αx = f mx  ed αy = f my rappresentano la lunghezza focale in pixel  nelle 

direzioni x ed y. Il rapporto αx / αy è detto rapporto di scala (aspect ratio). 

Inoltre l’intersezione dell’asse ottico con il piano dell’immagine, punto 

principale, può trovarsi in un punto diverso dal centro geometrico 

v 
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dell’immagine. Le coordinate del punto principale rispetto al centro 

dell’immagine sono u0, v0. Infine il parametro s introduce un’eventuale 

distorsione radiale (skew), anche se spesso si può considerare prossimo allo 

zero. Quindi i parametri da valutare per caratterizzare il processo di 

trasformazione del punto 3D a pixel sono: 4 per la telecamera, 3 per 

individuare l’orientazione, 3 per individuare la traslazione. In totale occorre 

stimare quindi 10 parametri. 

E’ possibile esprimere tutto il processo di trasformazione tramite 

un’unica matrice P 3x4, detta matrice di proiezione: 

 

P =  K [ R | t ] (1.1.3) 

 

λ ŵ = P X^ (1.1.4) 
 

 
 

 

Figura 1.1 Sistemi cartesiani di riferimento del modello pinhole della telecamera: O 

(X,Y,Z) è il sistema di riferimento dell’oggetto; C (Xc,Yc,Zc) è quello relativo alla 

telecamera; O’ (u,v) è il sistema di riferimento bidimensionale relativo al piano 

dell’immagine. 

 
 

Utilizzando tale rappresentazione abbiamo il vantaggio di avere un’unica 

matrice ma con l’esigenza di dover stimare 11 parametri ( considerando uno 

dei dodici elementi della matrice P pari ad 1). Per ricavare P, a meno 
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di un fattore di scala, occorre conoscere almeno 4 corrispondenze punto 3D 

– pixel, dato che si introducono 3 vincoli (equazioni) per ognuna di esse. 

 

 

1.2 Autocalibrazione mediante i punti di fuga. 
 

Una delle caratteristiche delle proiezioni prospettiche è che 

l’immagine di un entità che tende ad infinito acquista sul piano 

dell’immagine proprietà finite. Ad esempio rette parallele nello spazio 

euclidiano si intersecano in un punto all’infinito (punto di fuga), la cui 

proiezione però può giacere con coordinate finite sul piano dell’immagine. 

Il punto di fuga (vanishing point) e la sua proiezione dipende univocamente 

dalla direzione caratterizzante il fascio di rette. Analoghe considerazioni si 

possono fare per linee e piani all’infinito. 

L’importanza dei vanishing points risiede nel fatto che conoscendone 

tre relativi a direzioni mutuamente ortogonali, si può risalire alla matrice dei 

parametri intrinseci della telecamera K e alla matrice di rotazione R. Inoltre 

è possibile ricavare il vettore di traslazione t a meno di un fattore di scala. 

Consideriamo ad esempio le direzioni relative ai tre assi cartesiani del 

sistema di riferimento dell’oggetto tridimensionale. Le rette associate a tali 

direzioni si intersecano in tre punti all’infinito che indichiamo 

rispettivamente Îx = [1 0 0 0]T, Îy = [0 1 0 0]T, Îz = [0 0 1 0]T (in coordinate 

omogenee un punto all’infinito ha come ultima componente 0). Le proiezioni  

sul  piano dell’immagine  saranno ŵIx=[uIx vIx 1]  T, ŵIy=[uIy vIy 1] 
T, ŵIx=[uIz vIz 1] T e derivano da: 

 

Ix ŵ 
Ix 

 
 

Iy ŵ 
Iy 

 
 

Iz ŵ 
Iz 

K  R 

 
K  R 

 
K  R 

1  

| t  0  
0  
0  
0  

| t  1  
0  
0  
0  

| t  0  
1  
0  

 

K r1 

 
 

K r 2 

 
 

K r 3 

 

 

 

 
 

(1.2.1) 

 

 

 

 

 

 

Dove  r1,  r2  ,  r3  sono  i  vettori 

colonna della matrice di rotazione R. Si indichi con U e Λ le seguenti 

matrici: 
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Si ottiene un sistema lineare di 6 equazioni dalla seguente relazione tra 

matrici: 

 

U Λ UT = K KT (1.2.4) 

 

Se si conoscono quindi le coordinate dei tre vanishing point sul  piano 

dell’immagine è possibile risalire ai parametri intrinseci della telecamera α 

(= αx = αy), u0, v0. Inoltre si ricava la matrice di rotazione R dalla seguente 

espressione: 

 

R = K-1 U Λ (1.2.5) 
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2 

Figura 1.2 Punti di fuga (vanishing points): insiemi di linee parallele nello spazio 

euclideo originano delle linee sul piano dell’immagine che si intersecano in un punto. 
 

Fissando un punto dell’immagine ŵa come proiezione dell’origine del 

sistema di riferimento O(X,Y,Z), e conoscendo la corrispondenza di un 

ulteriore punto X^ b è possibile ricavare il vettore di traslazione risolvendo  il 

seguente sistema: 

 

λa ŵa = K t 

λb ŵb  = K [R | t ]  X^  b (1.2.6) 

 

Se non si conosce il secondo punto dalla prima parte del sistema precedente 

si può ricavare t a meno di un fattore di scala. 

 
 

1.3 Matrici di omografia. 
 

Se consideriamo la proiezione dei punti che appartengono nello spazio 

tridimensionale ad un piano si possono ricavare delle forme semplificate 

delle equazioni che descrivono il processo proiettivo. Supponendo per 

semplicità che X sia un generico punto appartenente al piano Z=0 possiamo 

scrivere: 

 

λ ŵ = K [ R | t ]  X^   = K [ r1  r2  t ] X^  z=0 (1.3.1) 

 

H= K [ r1  r2  t ] (1.3.2) 

 

H rappresenta la matrice di omografia (o collineazione) che realizza la 

trasformazione di punti appartenenti a due piani (il piano dell’immagine ed 

il piano 3D). Rispetto al caso generale che coinvolge la matrice di proiezione 

P, adesso si devono stimare 8 parametri (trascurando il fattore di scala). Per 

fissare l’omografia occorrono 4 corrispondenze invece delle 6 richieste dalla 

determinazione di P. 

Risulta utile considerare anche l’omografia relativa a due immagini di 

una stessa scena, considerando un insieme di punti appartenenti ad un piano 

nello spazio euclideo. 

 

 

H 
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2 1 t 2 2 

L’omografia H21 è la trasformazione che ci porta dal piano 

dell’immagine 1 al piano dell’immagine 2. L’indice i è relativo all’i-esimo 

punto dell’immagine risultante dalla proiezione dell’i-esimo punto 

appartenente al piano Z=0. 

1.4 Geometria epipolare. 
 

La geometria epipolare è la geometria intrinseca proiettiva che 

permette l’analisi di due immagini acquisite da punti di vista differenti. Essa 

deriva dall’intersezione dei piani dell’immagine con il fascio di piani avente 

la linea di base (baseline) come asse. La linea di base è quella linea che 

unisce i centri ottici delle telecamere. 
 

 

Figura 1.3 Geometria epipolare: deriva dall’intersezione dei piani dell’immagine I1 e I2 

con il fascio di piani avente la linea di base (baseline) come asse. La linea di base è 

quella linea che unisce i centri ottici C1 e C2 delle telecamere. Le proiezioni w1 e w2 del 

punto X giacciono rispettivamente sulle linee epipolare lm1 ed lm2. Ogni fascio di linee 

epipolari di una delle immagini è caratterizzato dall’epipolo ei. L’epipolo e1 rappresenta 

anche la proiezione del punto C2 sul piano dell’immagine I1, così come e2 è la proiezione 

di C1 su I2. 

 

 

 
Supponiamo che un punto X nello spazio 3D è visibile in due immagini 

differenti. Quale è la relazione che lega le corrispondenti proiezioni w1 e w2 

sulle due immagini? Come è mostrato in figura 1.3. i punti w1 e w2 

dell’immagine e X individuano un piano Π, sul quale giacciono anche i centri 

r r 1 
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C1 e C2 delle telecamere. Le intersezione del piano Π con il piano 

dell’immagine individua I 1 la linea epipolare lw1. Se si considerano le 

proiezioni di altri punti dello spazio 3D si avrà un fascio di rette 

accomunato dal passaggio in un unico punto e1 denominato epipolo. 

Analogamente è definito l’epipolo e2 sulla seconda immagine. 

La rappresentazione algebrica della linea epipolare è data dalla 

matrice fondamentale F. Supponiamo che l’origine del sistema di riferimento 

3D sia coincidente con l’origine C1 del sistema di riferimento della prima 

telecamera. Le matrici di proiezione relative alle due telecamere saranno 

rispettivamente P1 = K1 [ I | 0 ] e P2= K2 [ R | t ]. Allora gli epipoli e1 ed e2 

saranno dati dalle relazioni: 

 

e1 = K1 R
T t 

e2 =  K2 t (1.4.1) 

 

La matrice fondamentale F è allora espressa da: 

 

F= [e2] x K2 R (K1 )
-1 = (K2 )

-T [t] x R (K1)
-1 

= (K2) 
-TR[RT t] x(K1) 

–1 = (K2) 
-TR(K1)

T[e1] x (1.4.2) 

 

L’espressione della matrice fondamentale può essere determinata in vari 

modi sia per via algebrica sia per via geometrica. La proprietà che rende così 

utile la matrice fondamentale è data da: 

 

(w2 )
T F w1  = 0 (1.4.3) 

 

Tale relazione permette il calcolo della F a partire solo da corrispondenze 

trovate sulle due immagini (almeno 7). A seconda del moto che caratterizza 

lo spostamento da C1 a C2 (cioè R e t) si possono avere informazioni sulla 

struttura di F ed ottenere ulteriori vincoli per la sua determinazione. 

Conoscendo le matrici di proiezione delle due immagini è possibile ricercare 

lungo le linee epipolari corrispondenze che permettono di avere  in seguito 

ricostruzioni più dense. 

 

Se si suppone di lavorare con sistemi calibrati, ossia sono note la 

matrici K1 e K2 dei parametri intrinseci delle telecamere, possiamo utilizzare 

la cosiddetta matrice essenziale E derivandola direttamente da F: 

 

E   =  (K2 )
T  F  K1  =  [t] x  R  =  R  [RT  t] x (1.4.4) 

 

Il vincolo su punti corrispondenti sulle due immagini è allora esprimibile 

come: 

 

(w2 )
T E w1  = 0 (1.4.5) 
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1.5 Calcolo della matrice fondamentale e ricerca di 

corrispondenze. 
 

Vari metodi sono stati proposti per il calcolo della matrice fondamentale 

e per determinare quindi la geometria epipolare relativa ad una coppia di 

immagini. Tra quelli che rivestono una notevole importanza e sono 

largamente usati è opportuno introdurre il metodo basato sul RANSAC 

(Random Sample Consensus ). Tale algoritmo calcola in maniera automatica 

la matrice fondamentale, non utilizzando nessuna informazione a priori e 

restituisce inoltre un insieme di corrispondenze di punti d’interesse. Vediamo 

di esaminare i vari passi di tale metodologia: 

 

i. Ricerca di punti d’interesse: tramite un algoritmo come quello di 

Harris si individuano punti d’interesse sulle due immagini. E’ 

importante avere punti come angoli o intersezioni di contorni che sono 

meno sensibili alle variazioni d’intensità luminosa tra le due immagini 

e si possano localizzare anche con risoluzione sub-pixel. 

ii. Corrispondenze putative: si determina un insieme di corrispondenze 

trai punti d’interesse basandosi su criteri di prossimità e similarità. 

iii. Stima robusta tramite RANSAC: si ripete per N campioni, dove N è 

determinato adattativamente: 

a. Si seleziona un campione casuale di 7 corrispondenze e si 

calcola la matrice fondamentale F. Si avrà almeno una soluzione 

reale sulle tre possibili. 

b. Si calcola la distanza d per ogni corrispondenza putativa. 

c. Si calcola il numero di punti (inliers) che soddisfano entro una 

certa tolleranza la consistenza di F, cioè d < toll pixel. 

d. Se ci sono tre soluzioni reali di F occorre fare il calcolo del 

passo c. per ogni soluzione, e tenere solo quella che soddisfa 

più punti. 

Si sceglie la F con il più largo consenso, scegliendo a parità di inliers 

quella con la più bassa deviazione standard. 

iv. Stima non – lineare: si stima nuovamente F utilizzando tutte le 

corrispondenze classificate come inliers minimizzando una data 

funzione di costo ed usando l’algoritmo di Levenberg - Marquardt. 

v. Ricerca di corrispondenze guidata: ulteriori corrispondenze di punti di 

interesse sono determinate a partire dalla matrice F calcolata, 

definendo attorno le linee epipolari una zona di tolleranza. 

Gli ultimi due passi devono essere iterati fino a quando si ottiene un numero 

di corrispondenze stabile. 
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1.6 Triangolazione. 
 

Se si suppone che le matrici di calibrazione e la matrice fondamentale 

sono state stimate è possibile dalle corrispondenze di punti ricavare la 

posizione tridimensionale dei punti che hanno generato le proiezioni 

corrispondenti. Ricavando per ogni coppia di punti corrispondenti nelle due 

immagini i raggi di proiezione, si ricava la posizione nello spazio euclideo 

dalla loro intersezione. 

Questo è in parole semplici il cosiddetto metodo di triangolizzazione. 

Naturalmente ci saranno degli errori dovuti al rumore sul calcolo delle 

posizioni sull’immagine dei punti wi1 e wi2. Questo significa che  le  relazioni 

wi1=P1Xi e wi2=P2Xi non saranno perfettamente soddisfatte, così come il 

vincolo epipolare (wi2 )
T F wi1 = 0. Occorre quindi dare robustezza al metodo 

di triangolizzazione cercando di limitare gli effetti di rumore e quindi l‘errore 

di ricostruzione. 

Una prima stima delle posizioni 3D dei punti può essere ricavata utilizzando 

una metodologia lineare e risolvendo appunto per ogni coppia di 

corrispondenze il sistema: 

 

wi1=P1Xi 

 

wi2=P2Xi (1.6.1) 

 
 

Facendo una stima basata su ogni singolo punto le relazioni geometriche non 

saranno sicuramente soddisfate data la presenza dell’errore di misura e del 

modello semplificato del dispositivo di acquisizione. Per ciascuna coppia di 

immagini ad ogni corrispondenza sono associate le equazioni (1.6.1) che 

possono essere combinate in un sistema lineare AX=0. Il fattore di scala può 

essere eliminato operando un prodotto vettoriale ed ottenendo tre equazioni 

di cui due linearmente indipendenti. Per esempio, se si calcola w x (PX)=0, 

allora si ottengono: 

 

u (p3T X) – (p1T X) = 0 

 

w (p3T X) – (p2T X) = 0 

 

u (p2T X) –  w (p1T X) = 0 (1.6.2) 

 

dove con piT sono indicati i vettori riga della matrice di proiezione P. Tali 

equazioni sono lineari nelle componenti del vettore X. 
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Quindi il sistema lineare AX=0 è rappresentato da: 
 
 

 

dove sono state introdotte due equazioni per ogni immagine. Questo insieme 

di equazioni è ridondante dato che la soluzione è determinata a meno di un 

fattore di scala. Tale sistema può essere risolto in due modi: 

1) Metodo omogeneo (DLT): si trova la soluzione come il vettore 

singolare unitario corrispondente al più piccolo valore singolare della 

matrice A. Per ottenere una migliore approssimazione è opportuno che 

si operi una normalizzazione preliminare. 

2) Metodo non omogeneo: si ricerca soluzione con il metodo dei minimi 

quadrati servendosi direttamente delle equazioni non linearizzate 

(1.6.1). Possono sorgere dei problemi se X ha l’ultima coordinata 

prossima allo zero, quando invece per eliminare il fattore di scala si 

pone normalmente pari ad uno. 

 

I due metodi sono abbastanza simili ma presentano comportamenti differenti 

rispetto al rumore. Il metodo non omogeneo suppone che il punto soluzione 

non sia un punto all’infinito. Ciò rappresenta una difficoltà quando si sta 

cercando di ottenere la ricostruzione proiettiva, dove i punti ricostruiti 

potrebbero appartenere al piano all’infinito. A partire da queste prime stime 

lineari è opportuno procedere con una stima non lineare cercando di 

minimizzare una funzione di costo data. In genere si utilizza come funzione 

d’errore quella dell’errore geometrico: 

 

C(wi1, wi2) = d(wi1, ŵi1)2 + d(wi2, ŵi2)2
 

 

soggetta al vincolo  (ŵi2)
T F ŵi1 = 0 (1.6.4) 

 

dove d(*,*) è la distanza euclidiana tra il punto dell’immagine e la sua stima. 

Le stime dei punti sull’immagine sono relative all’assunzione di una 

distribuzione d’errore Gaussiana e allo stimatore di massima 

verosimiglianza. Questa funzione di costo è minimizzata utilizzando un 

metodo di minimizzazione numerica come ad esempio quello di Levenberg 

– Marquardt. 

Una approssimazione vicina al minimo può essere determinata utilizzando 

un’approssimazione del primo ordine della funzione di costo geometrica, 

chiamata funzione d’errore di Sampson. La soluzione può essere ottenuta 
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anche non in maniera iterativa risolvendo un polinomio di sesto grado. 

L’approssimazione di Sampson è valida quando gli errori sulle misure sono 

piccoli rispetto le misure stesse. La correzione δw del punto W=[u1,w1,u2,w2] 

è data da: 

 

δw = - JT (JJT) –1 ε (1.6.5) 

 

dove J è la matrice delle derivate parziali ed ε è il costo C(W) associato a 

W. Il punto corretto è allora: 

 

Ŵ = W + δw = W - JT (JJT) –1 ε (1.6.6) 

 

Nel caso della varietà definita da (w2)
T F w2 = 0, l’errore è ε = (w2)

T F w2 elo 

Jacobiano è dato da: 

 

J = ∂ε/∂w = [(F T w2) 1, (F T w2) 2, (F T w1) 1, (F T w1) 2] (1.6.7) 

 

dove ad esempio (F T w2) 1 = f11u1 + f21w1 + f31. Quindi l’approssimazione del 

primo ordine del punto corretto è la seguente: 
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L’approssimazione è accurata se la correzione in ogni immagine è piccola 

(meno di un pixel), ed ha il grande vantaggio di non essere onerosa dal punto 

di vista computazionale. Si noti che i punti corretti non soddisferanno il 

vincolo epipolare esattamente. 

 
 

1.7 Ricostruzione ottimale. 
 

In questa sezione sarà descritto un metodo di triangolazione che determina il 

minimo globale della funzione di costo (1.6.4) usando un algoritmo iterativo. 

Se il modello Gaussiano del rumore può essere ritenuto corretto, tale metodo 

è stato dimostrato ottimale [Hartley00]. 

Data una corrispondenza w1 ↔ w2 si ricerca una coppia di punti ŵ1e ŵ2 che 

minimizza la somma dei quadrati delle distanze (1.6.4) soggetta al vincolo 

epipolare (ŵ2)
T F ŵ1 = 0. 

Qualsiasi coppia di punti che soddisfa il vincolo epipolare deve giacere su 

una coppia di linee epipolare corrispondenti delle due immagini. Quindi il 

punto ottimale ŵ1 giace su una linea epipolare l1 ed analogamente ŵ2 su l2. 

Sia w1# il punto di l1 più vicino a w1 misurato, e w2# il punto di l2  più vicino a 

w2. Si può allora dire che d(w1, ŵ1) = d(w1, l1), dove d(w1, l1) rappresenta la 

distanza perpendicolare del punto w1 dalla retta l1. Un’analoga espressione è 

valida per d(w2, l2). 

La minimizzazione allora si applica alla quantità: 

 

d(w1, l1)
2 + d(w2, l2) 

2 (1.7.1) 

 

dove l1 ed l2 sono scelte tra tutte le coppie di linee epipolari corrispondenti. 

Il punto ŵ1 è allora il punto più vicino della linea l1 al punto w1 , e 

similarmente è definito ŵ2. 

 

La strategia di minimizzazione della (1.7.1) è la seguente: 

 

i. Parametrizzare il fascio di linee epipolari della prima immagine 

tramite il parametro t. Quindi indichiamo la generica linea epipolare 

della prima immagine l1(t). 

ii. Utilizzando la matrice fondamentale si calcola la corrispondente linea 

epipolare generica l2(t) sulla seconda immagine. 

iii. Si esprime la funzione di distanza d(w1, l1(t))
2 + d(w2, l2(t))

2 esplicitando 

la dipendenza dal parametro t. 

iv. Si trova il valore di t che minimizza la funzione di costo. 

 

In questo modo, il problema è stato ricondotto al trovare il minimo di una 

funzione di una sola variabile t: 
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minw {C=d(w1, ŵ1)
2+d(w2, ŵ 2)

2 } = mint {C=d(w1,l1(t))
2+d(w2, l2(t))

2} 

 

Facendo un’opportuna parametrizzazione del fascio di linee epipolari, la 

funzione di distanza è una funzione polinomiale razionale nella variabile t. 

Utilizzando semplici tecniche di calcolo, il problema della minimizzazione 

è ricondotto alla ricerca di radici reali di una polinomiale di sesto grado. 

 
 

1.7.1 Dettagli della minimizzazione. 

 

Se entrambi i punti delle immagini corrispondono con i rispettivi 

epipoli, allora il punto dello spazio giace sulla retta che passa per i centri 

delle telecamere. In tal caso è impossibile determinare la posizione del punto 

nello spazio. Se solamente uno dei punti coincide con un epipolo, allora si 

può affermare che l’altro coincide con il centro dell’altra telecamera. Di 

conseguenza si suppone che nessuno dei due punti delle immagini 

corrispondano agli epipoli. 
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2 

b 
 

2 

Sotto queste ipotesi, possiamo semplificare l’analisi applicando una 

trasformazione rigida ad ciascuna immagine allo scopo di piazzare entrambi 

i punti w1 e ŵ1 all’origine, [0 0 1]T in coordinate omogenee. 

Inoltre si possono piazzare gli epipoli rispettivamente nei punti [1 0 f1]
T e     [1 

0 f2]
T. Un valore di f nullo significa che l’epipolo è all’infinito. 

L’applicazione di queste due trasformazioni rigide non influisce sulla 

funzione della somma dei quadrati delle distanze (1.7.1), e quindi lascia 

inalterato il problema della minimizzazione. La matrice fondamentale 

diviene allora: 

 
 

 f1 f 2d   f 2c  f 2d  

F 
   f1b a  

   f1d c d  
(1.7.2) 

 

Si consideri una linea epipolare della prima immagine passante attraverso il 

punto [0 t 1] T e l’epipolo [1 0 f1]
T. Indichiamo questa linea epipolare con 

l1(t). Il vettore che rappresenta questa linea è dato  dal  prodotto vettore  [0  t 

1] x [1 0 f1] = [tf1 1 -t], ed la distanza al quadrato della linea dall’origine è 
 

t 2 

d (w1 , l1 (t))  
2

 (1.7.3) 

1  (tf1 ) 
 

Usando la matrice fondamentale per trovare la corrispondente linea 

epipolare nella seconda immagine si ha 

 

l2(t) = F [0 t 1]T = [-f1(ct+d), at+b, ct+d]T (1.7.4) 

 

Questa è la rappresentazione della linea l2(t) come vettore omogeneo. La 

distanza al quadrato di questa linea dall’origine è uguale a 
 

2 (ct  d )2 

d (w2 , l2 (t)) 
(at  b)2  f 2 (ct  d )2 

(1.7.5) 

 

La distanza al quadrato totale è data da : 
t 2 (ct  d )2 

s(t)  
2

 

1  (tf1 ) 
 
(at  b)2  

2 (ct  d )2 
(1.7.6) 

Questa è la funzione della quale ricerchiamo il minimo. Determiniamo la 

f 2 
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derivata di tale funzione per poi uguagliarla a zero: 
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2 

1 2 

1 

2 

s'(t)  
2t

  
2(ad  bc)(at  b)(ct  d )  

(1.7.7) 

1  (tf1 ) (at  b)2  f 2 (ct  d )2 

 

Massimi e minimi corrispondono all’annullamento della derivata prima. 

Raggruppando i due termini della derivata sotto un comune denominatore ed 

eguagliando il numeratore a zero si ottiene la seguente condizione: 

 

g(t) = t((at+b)2 + (f1)2 (ct+d)2)2-(ad-bc) (1+ (f1)2t2)2(at+b)(ct+d) = 0 (1.7.8) 

 

I minimi o massimi della s(t) saranno anche le radici del polinomio g(t). Dato 

che tale polinomio ha grado sei , al più si possono avere sei radici reali 

corrispondenti a tre minimi e tre massimi della funzione s(t). 

Il minimo assoluto di s(t) può essere trovato trovando le radici di g(t) e 

valutando la funzione s(t) per ognuna delle radici reali. Più semplicemente, 

si può controllare solo il valore di s(t) della parte reale di ogni radice, 

eliminando il problema di controllare se la radice è reale o complessa. Si può 

anche controllare il valore asintotico si s(t) al tendere di t ad infinito per 

vedere se la distanza minima corrisponde a t → ∞, corrispondente ad una 

linea epipolare f1w = 1 nella prima immagine. 

 

1.7.2 Ricostruzione di linee e calcolo dei punti di fuga. 

 

Si supponga che una retta nello spazio 3D sia proiettati in due 

immagini nelle due rette l1 ed l2. La linea nello spazio tridimensionale può 

essere ricostruita dalla proiezione inversa di ognuna delle linee ed 

intersecando i due piani così determinati. 

Siano   π1   =  P T  l1   e    π2  =  P T  l2     i  due  piani  in  questione.  Spesso è     

conveniente    parametrizzare    la     linea     dello     spazio tridimensionale 

utilizzando i due piani definiti dalle linee delle immagini,  e si rappresenta 

matrice la seguente matrice 2x4: 
 

l T P  
L  

1  (1.7.9) 

l T P 
 

Nel caso del sistema originato da una corrispondenza di punti in due 

immagini, si avevano quattro equazioni per determinare tre incognite (la 

posizione del punto nello spazio). Di converso, nel caso di corrispondenze 

di linee, si hanno quattro equazioni e quattro incognite e quindi la soluzione 

è ancora determinabile. Per quanto riguarda le condizioni che provocano 

degenerazioni al problema, queste sono più onerose rispetto quelle relative 

alle corrispondenze di punti. Le rette che giacciono sul piano epipolare non 

2  

2 
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possono essere determinate a partire dalle loro immagini in due differenti 

viste. Nel caso dei punti si aveva una famiglia di punti determinati al 
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variare di un solo parametro. Nel caso delle linee invece la famiglia delle 

degenerazioni dipende addirittura da tre parametri. 

Un’applicazione della determinazione di linee nello spazio tridimensionale 

è data dalla ricerca dei punti di fuga. Si è visto nelle sezioni precedenti che 

rette parallele nello spazio tridimensionale danno luogo a linee sulle 

immagini che possono intersecarsi. 

Se consideriamo un fascio di rette sull’immagine che corrisponde ad una 

particolare direzione nello spazio, origineranno un’intersezione 

corrispondente alla proiezione del punto di fuga. 

Data la presenza di rumore delle misure, generalmente l’intersezione di tali 

linee non sarà unica. Spesso il vanishing point è fissato allora nel punto più 

vicino a tali rette. Tale soluzione non è tuttavia ottimale. 

Occorre quindi ricorrrere allo stimatore di massima verosimiglianza (MLE) 

sia per il vanishing point che le linee che lo generano. Per fare ciò si 

minimizza la somma dei quadrati delle distanze ortogonali di due punti 

stimati dalla linea misurata. Anche in questo caso è opportuno ricorrere al 

metodo di minimizzazione di Levemberg-Marquardt. 

 
 

1.8 Rettificazione. 
 

Un’utile trasformazione proiettiva è quella della rettificazione. Il 

problema consiste, nel caso più generale, nel determinare nuove immagini a 

partire da quelle date. Si parla di rettificazione ad esempio nella tecnica del 

mosaicing che consiste nel creare un’immagine panoramica risultante 

dall’unione di più immagini. Naturalmente la fusione deve considerare la 

differenza dei punti di vista e creare quindi la nuova immagine in maniera 

consistente. Nel caso di due immagini, per esempio, si può pensare di 

ricondursi a due nuovi punti di vista che portino le due immagini ad essere 

accostate (o sovrapposte) sullo stesso piano (vedi figura 1.4). 

Si tratta quindi in genere nel determinare omografie che possano trasferire i 

punti di un’immagine in un altro dato piano rappresentante la nuova 

immagine rettificata. Supponiamo che P sia la matrice di proiezione relativa 

ad una delle due immagini. Possiamo estrarre le lunghezze focali a ed a 

sfruttando le seguenti relazioni: 

 

α x = || p1 ◦ p3 || 

 

α y  =  || p2  ◦ p3 || (1.8.1) 

 

Il centro ottico è dato da : 

 

C = -  ( [p1 p2 p3]  p4 ) –1 (1.8.2) 
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Se P 1 e P 2 sono le matrici di proiezioni delle due immagini , la normale al 

piano retinale è data da: 

 

n = (p3_P1 )
T ◦ (p3_P2 )

T (1.8.3) 

 

Dalle precedenti relazioni è immediato ricavare le omografie H1_rect  ed  

H2_rect che realizzano la rettificazione voluta. 

 

Per quello che interessa per il prosieguo si è interessati ad una 

rettificazione più semplificata: data un immagine visualizzante una 

proiezione di una struttura planare tridimensionale, si vuole determinare 

l’omografia che porti ad un nuovo piano dell’immagine parallelo al piano 

considerato. Si avrà così una nuova immagine con la struttura planare non 

deformata dalla prospettiva, e caratterizzata da una tessitura simile (a meno 

di un fattore di scala) a quella del piano originale. 
 

 

Figura 1.4 Rettificazione per il mosaicing: date due immagini I1 e I2 si vogliono 

determinare nuove immagini che siano parallele alla vaseline e che siano contigue o 

sovrapposte se hanno porzioni d’immagini che si riferiscono agli stessi punti 3D. 

 

Supponiamo che w sia la proiezione del punto X appartenente al 

piano Z=0, allora si avrà l’omografia H = [r1 r2 t] tale che: 

 

λ  ŵ =  H X^  z=0 (1.8.4) 

 

Se vogliamo posizionare il nuovo piano dell’immagine ad una distanza dca 

pari alla distanza del centro ottico nell’imagine di partenza dalla struttura 

planare, allora l’omografia che realizza il parallelismo Hpar è data da: 
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0 
 

 

H par 

1 0 0    

0 1  

 
(1.8.5) 

0 0  d ca  
 

Combinando H ed H otteniamo l’omografia di rettificazione H: 

 

Hrect = Hpar H
-1 (1.8.6) 

 

La trasformazione rettificante riduce anche il problema della ricerca di 

corrispondenze in una coppia d’immagini, semplificando la determinazione 

della geometria epipolare. Avendo le due immagini su uno stesso piano, è 

possibile trovare le corrispondenze esaminando righe di pixel delle due 

immagini, senza quindi doverle ricercare su rette non orizzontali. La 

semplificazione si ripercuote nel fatto di poter implementare algoritmi più 

veloci ed efficienti dal punto di vista computazionale. 

L’approccio classico nel fare questo tipo di trasformazione è quello di 

ricondurre l’epipolo di ogni immagine al punto all’infinito. In questo modo 

si hanno appunto linee epipolari parallele all’asse x dell’immagine. Nella 

determinazione della matrice di trasformazione Hrect si hanno quattro gradi di 

libertà. 

Una condizione che conduce a buoni risultati è quella di imporre che la 

trasformazione Hrect sia quanto più possibile una trasformazione rigida nell 

vicinanze di un dato punto w0 dell’immagine. Ciò significa che 

l’approssimazione del primo ordine della trasformazione in vicinanza del 

punto w0 sia risultante solo da una rotazione ed una traslazione, e quindi 

mantenendo intatta l’apparenza originale dell’area attorno ad esso. 

Un’appropriata scelta di w0 può essere rappresentata dal centro 

dell’immagine. 

Supponiamo di fissare l’origine del sistema su w0 e che le coordinate 

dell’epipolo siano e = [f 0 1], cioè giaccia sull’asse x. Si consideri la seguente 

trasformazione: 
 

 1 

G 
 

0 

0 0  
 
 

 

(1.8.7) 

 1/ f 0 1  
 

Questa trasformazione porta l’epipolo [f,0,1]T al punto all’ininito [f,0,0] T 

come richiesto. Un generico punto [u,v,1]T viene trasferito da G nel punto 

[u*,v*,1]T = [u,v,1-u/f]T. Se | u / f | < 1 allora si può scrivere: 

 

[u*,v*,1]T = [u,v,1-u/f]T = [u(1+u/f+...),v(1+x/f+...),1]T (1.8.8) 

0 1 
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e lo Jacobiano è: 
 

(u*, v*)  1  2u / f 0  

 
 (1.8.9) 

(u, v) 
 

v / f 1  u / f  
 

più gli altri termini di ordine superiore in u e v. Se u = v = 0 allora lo 

Jacobiano diventa la matrice d’identità. In altre parole, G è approssimata (al 

primo ordine) nell’origine dalla matrice d’identità. 

Per un’arbitrario punto d’interesse w0 ed epipolo e, la trasformazione 

richiesta è Hrect=GRT, dove R e T sono la rotazione e la traslazione per 

portare w0 nell’origine e l’epipolo nel punto [f,0,1]. 
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Parte II 

 

Algoritmi per la ricostruzione tridimensionale 

 
2.1 Introduzione. 

 

La ricostruzione di scene architettoniche è uno dei temi di ricerca 

trattato in maniera ampia negli ultimi anni. Oltre ad essere un valido terreno 

di sperimentazione delle tecniche sviluppate dalla visione artificiale, 

presenta numerosi risvolti di natura applicativo – commerciale. Si vuole 

ottenere in maniera automatica la ricostruzione a partire da una serie di 

immagini non calibrate. In questo capitolo è presentata una metodologia che 

fa uso delle informazioni geometriche ottenibili sia dalle immagini, sia dalla 

conoscenza della pianta della scena in esame (vedi figura 7.1). Si suppone 

che siano acquisite coppie di immagini relative ad elementi architettonici con 

la presenza predominante di strutture planari come facciate. Sotto questa 

ipotesi, si fa largo impiego delle stime delle omografie estendendole quindi 

alla ricostruzione vera e propria. 

 

Gli approcci utilizzati in questo contesto di ricerca sono stati numerosi 

e differenti fra loro. Alcuni tentano la ricostruzione tridimensionale 

basandosi su coppie di immagini stereo calibrate [Narayanan98]. Altri 

applicano la triangolarizzazione ed i vincoli ricavati dalla geometria 

epipolare su sequenze estese di immagini della scena [Beardsley96, 

Pollefeyes98, Tomasi90], ovvero utilizzando vincoli di trilinearità 

[Hartley96, Luong96]. Altri approcci consistono nella visualizzazione basata 

sull'immagine, senza ricavare un modello esplicito tridimensionale 

[Faugeras88, Gortler96, Seitz96, Szeliski97, Szeliski98]. Si possono 

ricavare modelli tridimensionali anche da mosaico panoramico di immagini 

e vincoli geometrici [Kang97, Shum98]. L'approccio scelto è invece legato 

all'utilizzo esteso di vincoli ricavati dalla stessa scena, come parallelismo, 

ortogonalità e corrispondenza di elementi geometrici. Tale approccio è stato 

utilizzato con fruttuosità da molti ricercatori ed è ampiamente trattato in 

letteratura [Cipolla99, Debevec96, Liebowitz98]. Il contributo originale 

della presente trattazione consiste nell'utilizzo dei vincoli ricavabili dalla 

pianta e che permettono da poche viste della scena di ottenere ricostruzioni 

suggestive e precise della scena. 

 

2.2 Schema del sistema di ricostruzione proposto. 
 

Il sistema di ricostruzione utilizza una o più coppie di immagini di 

facciate delle strutture architettoniche da ricostruire. Per ogni coppia 
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vengono introdotte corrispondenze di elementi geometri (punti, rette, etc.) 

tra immagine e pianta. Il sistema considera tutti i possibili vincoli ricavati da 

tali corrispondenze e elabora un modello consistente e coerente ad essi. 

L'elaborazione è suddivisa in parecchi passi lineari che garantiscono 

semplicità e efficienza computazionale. 
 

 
 

 

Figura 2.1 Ricostruzione di una scena architettonica: (a) n-immagini della scena con la 

presenza predominante di strutture piane (facciate); (b) pianta della scena da ricostruire. 

 

 
Sulla singola immagine si realizzano le seguenti fasi: 

 

 Stima dei parametri intrinseci della telecamera e della sua orientazione 

tramite la localizzazione dei punti all'infinito dell'immagine prospettica. 

 

 Stima della traslazione della telecamera fissando due punti noti sulla 

pianta. 

 

 Rettificazione dell'immagine basata sull'omografia rispetto ad una 

struttura planare di riferimento. 

 

In questo modo, per ogni singolo punto di vista, si hanno una prima stima 

della matrice di proiezione e la tessitura degli elementi planari. Allo scopo 

di avere stime migliori delle matrici di proiezione si utilizza l'omografia tra 

due immagini che inquadrano la stessa superficie planare e si ricavano in 

maniera automatica corrispondenze per la successiva ricostruzione. Il 

modello finale è ricavato dopo aver eseguito una ottimizzazione globale, 

sfruttando tutte le immagini, la pianta, i vincoli introdotti e le 

b a 
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corrispondenze ricavate automaticamente. Le fasi finali dell'elaborazione 

sono dunque le seguenti: 

 

 Ottimizzazione globale utilizzando tutti i vincoli della pianta. 

 

 Triangolazione e ricostruzione grezza del modello. 

 

 Ricostruzione della tessitura e posizionamento sul modello. 

 

 Esportazione del modello nello standard VRML. 

 

2.3 Calibrazione e stima della matrice di proiezione. 
 

Introducendo su ogni singola immagine una serie di linee 

corrispondenti alle direzioni orizzontale e verticale è possibile ricavare due 

punti all'infinito della proiezione prospettica (vedi immagine 2.2). Per una 

completa calibrazione occorrerebbero tre di tali punti corrispondenti a 

direzioni mutuamente ortogonali, ma anche con solamente due di essi è 

possibile avere valide informazioni. 
 

 

Figura 2.2. Calibrazione tramite punti all'infinito: (a) insiemi di linee evidenziate 

dall'utente per individuare due direzioni mutuamente perpendicolari; (b) calcolo delle 

intersezioni dei due fasci di retta e determinazione dei punti all'infinito. 

 

Supponendo che il punto principale coincida con il centro geometrico 

dell'immagine e il parametro di distorsione radiale sia trascurabile, si ottiene 

una stima significativa della lunghezza focale e quindi della matrice di 

calibrazione K. Inoltre abbiamo una stima della matrice di rotazione R della 

telecamera e, fissando due punti noti sulla pianta, anche il vettore di 

b a 
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traslazione t. Tutte queste componenti ci danno una stima approssimativa 

della matrice di proiezione legata alla singola vista. 

 
 

2.4 Ricerca di nuove corrispondenze. 
 

Per migliorare le stime delle matrici di proiezione e ricavare 

corrispondenze tra punti di immagini differenti si impiega una tecnica basata 

su omografia. Considerando due immagini di una stessa struttura planare, si 

ricavano su entrambe insiemi di punti caratteristici. 
 

 

Figura 2.3. Ricerca di nuove corrispondenze: (a) insieme di punti ricavato 

dall'applicazione del rilevatore di angoli di Harris; (b) selezione degli angoli (in verde) 

per la nuova stima dell'omografia. 

 

 
Applicando ad esempio l'algoritmo di Harris, si rilevano un certo numero di 

angoli presenti su ogni immagine. Per stabilire la corrispondenza di tali 

angoli nelle due diverse immagini si impiega l'omografia ricavata dalle 

precedenti stime delle matrici di proiezione relative ai due punti di vista. 

Considerando anche una certa tolleranza si ottengono le corrispondenze 

volute appartenenti alla struttura planare presa in considerazione. Tali 

corrispondenze sono inoltre sfruttate per una nuova stima dell'omografia in 

esame e, tramite decomposizione, della matrice di proiezione che lega le due 

immagini. 

b a 
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2.5 Vincoli ricavati dalla pianta. 
 

La pianta costituisce una sorgente ricca d'informazioni geometriche utili alla 

caratterizzazione del modello tridimensionale da ricavare. I vincoli 

utilizzabili in maniera semplice scaturiscono dalle seguenti corrispondenze: 

 

1. punto – punto 

2. punto –linea 

3. linea –linea 

 

Per ogni immagine si introducono le possibili corrispondenze, considerando 

che anche i punti all'infinito ricavati in precedenza costituiscono dei vincoli 

punto – punto. 

La corrispondenza punto – punto introduce tre vincoli sulla matrice di 

proiezione relativa alla vista, come facilmente si può evincere dalla 

relazione: 

 

λ w = P X (2.5.1) 
 

 

Figura 2.4 Vincoli ricavati dalla pianta: (a) (b) esempio di corrispondenze linea- 

linea individuate tra un'immagine e la pianta. 

 

La corrispondenza punto linea è invece esprimibile tramite la seguente 

relazione: 
 

L P  1 w  
0
  (2.5.2) 

4 x 4  
1 

  

3 x1 

  
 

dove L è una matrice 3x4 contenente i coefficienti dell'equazione della retta 

b a 
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3D, e P4x4 è la matrice P con l'aggiunta finale della riga [ 0 0 0 1 ]. 

Infine, la corrispondenza linea – linea è esprimibile tramite la relazione: 
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w1 ^ w2 = ( P X3 )  ^  ( P X4 ) (2.5.3) 

 

dove w1 e w2 sono due generici punti della retta dell'immagine, mentre X3 

eX4 sono due generici punti della retta sulla pianta. 

 

 
2.6 Rettificazione. 

 

L'omografia ricavata dalle strutture planari di riferimento può essere 

utilizzata per la rettificazione delle immagini. La trattazione analitica è stata 

già trattata nella parte teorica alla quale si rimanda. 
 

 

Figura 2.5 Rettificazione basata su un piano di riferimento: (a) la facciata presente 

nell'immagine costituisce la struttura planare di riferimento adoperata per la 

rettificazione; (b) risultato dell'operazione di rettificazione, con il piano dell'immagine 

parallelo alla struttura planare di riferimento. 

 

Nella figura 2.5 è mostrato il risultato dell'operazione di rettificazione su una 

delle immagini della sequenza presa in esame. Avendo nella nuova 

immagine la struttura planare parallela al piano dell'immagine è possibile 

estrarre la tessitura della facciata per collocarla direttamente nel modello 

tridimensionale della ricostruzione. 

Le altre strutture presenti nell'immagine e che tramite i punti ricostruiti 

completeranno il modello, saranno in maniera analoga rettificati per estrarne 

la tessitura. 

b a 
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2.7 Ricostruzione 3D. 
 

Tutti i vincoli ricavati dalla pianta, le nuove corrispondenze trovate tramite 

l'utilizzo delle omografie confluiscono nel processo finale di ottimizzazione 

della ricostruzione desiderata. Tale processo tenta di minimizzare in maniera 

iterativa l'errore di riproiezione, ossia la differenza tra le immagini della 

sequenza e quelle ottenute dal modello considerando i parametri proiettivi 

stimati. Anche utilizzando solo le tre coppie di immagini mostrate 

nell'esempio proposto in questa trattazione, si ottengono risultati di 

ricostruzione soddisfacente. L'errore medio di riproiezione rilevato per 

questa ricostruzione e per le altre sperimentate è stato all'incirca di 1,4 pixel. 

Tale errore è da considerarsi buono, anche perché non incide in maniera 

significativa sulla precisione del modello tridimensionale della scena 

ottenuto. A partire dai punti tridimensionali stimati tramite triangolazione 

dalle corrispondenze ottenute in maniera automatica, è possibile raffinare il 

modello in parti ritenute interessanti ( particolari architettonici di rilievo). A 

tal fine si potrebbero utilizzare tecniche di "space carving" , o di 

ricostruzione a partire da insiemi densi di punti. 

Un'ulteriore estensione sarebbe di affrontare l'estrazione dei parametri di 

illuminazione della scena per ottenere un modello ancora più realistico e 

visibile sotto condizioni di illuminazioni differenti da quelle originali. 
 

 
 

 

Figura 2.6 Ricostruzione dei piani di riferimento: (a) punti e piani di riferimento 

ricostruiti; (b) ricostruzione con la tessitura e posizionamento sulla pianta. 

b a 
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c 

 

 

d 
 

Figura 2.7 Esempi di ricostruzioni in formato VRML 
 

 

 

Figura 2.8 Particolare del modello VRML del Senate House, Cambridge (UK). 
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Figura 2.9 Particolare del modello VRML del Senate House, Cambridge (UK). 
 

 

 

 

 

Figura 2.10 Particolare del modello VRML del Senate House, Cambridge (UK). 
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Parte III 

Implementazione in Matlab 

3.1 Introduzione. 
 

Nelle pagine seguenti sono riportate le funzioni matlab 

implementate per le sperimentazioni sulla ricostruzione delle scene 

architettoniche. Tali sorgenti sono stati anche convertiti in un 

listato in linguaggio C sfruttando gli appositi strumenti forniti dal 

Matlab. Dai sorgenti C si è quindi ottenuto del codice eseguibile 

indipendente dall’interprete Matlab e con prestazioni 

computazionali notevolmente incrementate. 
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3.2 Albero delle procedure. 

 

E’  riportarto lo schema delle chiamate delle varie funzioni 

implementate. 
 
 

R i c o s t r u z i o n e 3 D d i s c e n e a r c h i t e t t o n i c h e 

 
k i n g r e c . m 

 

  

 

r e a d p g m . m 
 

 
 

 

p r o j m a t f r o m p a i r . m 
 

 

  

 

t r i a n g u l a t i o n . m 
 

 
 

 

h o m s y s t e m 2 v p . m 
 

 
 

 

p l o t t i n a l l . m 
 

 
 

 

p l o t r e c 
 

 

  

 

m y p l o t 3 
 

 
 

 

m y t e x t 
 

 
 

 

m y l i n e 
 

 
 

 

m a p k i n g p a r a d e . m 
 

 

  

 

p l o t o n m a p 
 

 
 

 

p l o t o n i m a g e 
 

 
 

 

m a p c o n s t r a i n t s . m 
 

 
 

 

g e n t e x t u r e . m 
 

 

  

 

i n i t v r m l f i l e . m 
 

 
 

 

g e n r e c t i f . m 
 

 
 

 

a d d v r m l f i l e 
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%King's Parade reconstruction 
%image sixe 562 x 450 w0=[281;225]; u0=w0(1); 

v0=w0(2); 

%--------------------------------------------------------------------- 
- 
% Pair img1-img2 
%--------------------------------------------------------------------- 
- 

 
img1=readPGM('facadeA1.pgm'); figimg1=1; 
vp1_1=[-1.7328e+03;259.1731;1]; vp2_1=[292.7971;-7.8315e+03;1]; wa1=[126;142;1]; 
wb1=[504;119;1]; d1=440; 
%!tjdat2txt facadeA1_200.tjdat > corFacA1_200.dat 
filecorn1='corFacA1_200.dat'; 

 
img2=readPGM('facadeA3.pgm'); figimg2=2; 
vp1_2 = [-991.0428;252.7856;1]; vp2_2 = [421.9412;-4.5335e+03;1]; 
% terrace 
wa2=[66;136;1]; wb2=[500;89;1]; d2=440; 
%!tjdat2txt facadeA3_200.tjdat > corFacA3_200.dat 
filecorn2='corFacA3_200.dat'; 

%----------------------------------------------------------- [K1,R1,t1,H1,Xca1,cp1, K2,R2,t2,H2,Xca2,cp2, .... 

H21,corr,ncorr,Xrec,lsplane,H21new,R21new,t21new,E12] .... 
= projmatfrompair(w0,vp1_1,vp2_1,img1,wa1,wb1,d1,filecorn1, .... 

vp1_2,vp2_2,img2,wa2,wb2,d2,filecorn2); 
 

%----------------------------------------------------------- 
 

plottingall(img1,figimg1,wa1,wb1,cp1,corr,ncorr); 
plottingall(img2,figimg2,wa2,wb2,cp2,corr(:,3:4),ncorr); 

 
%------------------------------------------------------------ 
figrec=3; 
plane=[0 0 0; 440 0 0; 440 180 0; 0 180 0;0 0 0]; 
Ra1_a1=[1 0 0; 0 1 0; 0 0 1]; 
ta1_a1=[0;0;0]; 
plotrec(figrec,Xrec,Ra1_a1,ta1_a1,Xca1,'C1',Xca2,'C2',plane,lsplane,1) 

 
%------------------------------------------------------------ 

 
 

%--------------------------------------------------------------------- 
- 
% Pair img3-img4 
%--------------------------------------------------------------------- 
- 

 
img3=readPGM('facadeB1.pgm'); figimg3=4; vp1_3=[1.0724e+03;365.7302;1]; 
vp2_3=[351.7184; -2.5200e+03;1]; wa3=[180;67;1];wb3=[415;144;1]; d3=200; 
%!tjdat2txt facadeB1_200.tjdat > corFacB1_200.dat 
filecorn3='corFacB1_200.dat'; 

File kingrec.m 
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img4=readPGM('facadeB2.pgm'); figimg4=5; 
vp1_4=[-2.9504e+03;66.7313;1]; vp2_4=[507.4475;-2.3771e+03;1]; wa4=[167;114;1]; 
wb4=[493;119;1]; d4=200; 
%!tjdat2txt facadeB2_200.tjdat > corFacB2_200.dat 
filecorn4='corFacB2_200.dat'; 

 
%----------------------------------------------------------- [K3,R3,t3,H3,Xca3,cp3, K4,R4,t4,H4,Xca4,cp4, .... 

H43,corr43,ncorr43,Xrec43,lsplane43,H43new,R43new,t43new,E43] .... 
= projmatfrompair(w0,vp1_3,vp2_3,img3,wa3,wb3,d3,filecorn3, .... 

vp1_4,vp2_4,img4,wa4,wb4,d4,filecorn4); 
 

%----------------------------------------------------------- 
 

plottingall(img3,figimg3,wa3,wb3,cp3,corr43,ncorr43); 
plottingall(img4,figimg4,wa4,wb4,cp4,corr43(:,3:4),ncorr43); 

 

%------------------------------------------------------------ plane43=[440 0 0; 440 0 200; 440 180 200; 440 180 

0;440 0 0]; 
Ra1_a3=[0 0 -1;0 1 0;1 0 0]; 
ta1_a3=[440;0;0]; 
plotrec(figrec,Xrec43,Ra1_a3,ta1_a3,Xca3,'C3',Xca4,'C4',plane43,lsplan e43,0); 

 
%------------------------------------------------------------ 

 
%--------------------------------------------------------------------- 
- 
% Pair img5-img6 
%--------------------------------------------------------------------- 
- 

 
img5=readPGM('facadeC1.pgm'); figimg5=6; vp1_5=[1.1720e+03;286.7446;1]; vp2_5=[ 
227.9593;-5.8039e+03;1]; wa5=[94;107;1]; wb5=[355;150;1]; d5=300; 

 
%!tjdat2txt facadeC1_300.tjdat > corFacC1_300.dat 
filecorn5='corFacC1_300.dat'; 

 
img6=readPGM('facadeC3.pgm'); figimg6=7; vp1_6=[2.1153e+03;312.7557;1]; 
vp2_6=[363.6234;-5.1812e+03;1]; wa6=[109;130;1]; wb6=[392;155;1]; d6=300; 
%!tjdat2txt facadeC3_300.tjdat > corFacC3_200.dat 
filecorn6='corFacC3_300.dat'; 

 
%----------------------------------------------------------- [K5,R5,t5,H5,Xca5,cp5, K6,R6,t6,H6,Xca6,cp6, .... 

H65,corr65,ncorr65,Xrec65,lsplane65,H65new,R65new,t65new,E65] .... 
= projmatfrompair(w0,vp1_5,vp2_5,img5,wa5,wb5,d5,filecorn5, .... 

vp1_6,vp2_6,img6,wa6,wb6,d6,filecorn6); 
 

%----------------------------------------------------------- 
 

plottingall(img5,figimg5,wa5,wb5,cp5,corr65,ncorr65); 
plottingall(img6,figimg6,wa6,wb6,cp6,corr65(:,3:4),ncorr65); 



41  

%------------------------------------------------------------ 
 

plane65=[-80 0 -385; -80 0 -110;-80 180 -110;-80 180 -385;-80 0 -385]; 
Ra1_a5=[0 0 -1;0 1 0;1 0 0]; ta1_a5=[-
80;0;-400]; 
plotrec(figrec,Xrec65,Ra1_a5,ta1_a5,Xca5,'C5',Xca6,'C6',plane65,lsplan e65,0); 

 
%------------------------------------------------------------ 

 
%gentexture; 
%rectovrml; 
figmap=8; 
mapKingParade; 
%recimprov; 
mapconstraints; 

 
figure(1); colormap(gray(255)); image(img1); hold on; zoom on; figure(2); 
colormap(gray(255)); image(img2); hold on; zoom on; figure(4); colormap(gray(255)); 
image(img3); hold on; zoom on; figure(5); colormap(gray(255)); image(img4); hold on; zoom 
on; figure(6); colormap(gray(255)); image(img5); hold on; zoom on; figure(7); 
colormap(gray(255)); image(img6); hold on; zoom on; 

 
 

 

function picture = readPGM(filename); 
 

% picture = readPGM(filename) 
% 
% This function reads a .pgm file and returns a matrix with the 
% values of the gray levels. 
% 
% filename - name of the .pgm file; 
% picture - matrix of gray levels. 

 
fid = fopen(filename); 
PGM_type = fscanf(fid, '%c', 2); if (PGM_type 
~= 'P5') 

error('*** error in PGM file! ***'); 
else 

 
 

end 

 
dummy = fscanf(fid, '%c', 1); comment = 
fscanf(fid, '%c', 1); 

if (comment == '#') 
while (double(comment) ~= 10) comment = fscanf(fid, 

'%c', 1); 

 
 

end 

end 
comment = fscanf(fid, '%c', 1); 

 
 

max_x = 0; 
aux = double(comment); while 
(aux ~= 32) 

max_x = 10*max_x + str2num(comment); comment 
= fscanf(fid, '%c', 1); 

File readpgm.m 
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aux = double(comment); 
end 
max_y = fscanf(fid, '%d', 1); 
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max_color = fscanf(fid, '%d'); 
 

picture = reshape(fread(fid), max_x, max_y)'; fclose(fid); 
 

return 
 
 

 

function [K1,R1,t1,H1,Xca1,cp1, K2,R2,t2,H2,Xca2,cp2, .... 
H21,corr,ncorr,Xrec,lsplane,H21new,R21_new,t21_new,E12] .... 

= projmatfrompair (w0,vp1_1,vp2_1,img1,wa1,wb1,d1,filecorn1, .... 
vp1_2,vp2_2,img2,wa2,wb2,d2,filecorn2); 

 
u0=w0(1); v0=w0(2); 

 
[K1,R1,t1,f1,vp3_1]=homsystem2vp(u0,v0,vp1_1(1),vp1_1(2), .... 

vp2_1(1),vp2_1(2), wa1,wb1,d1); 
 

Xca1=-inv(R1)*t1; H1=K1*[R1(1:3,1) R1(1:3,2) 
t1]; 

 
disp('calibration 1st image ................................. done'); 

 
disp('loading corners 1st image'); 
%------------------------------------------------- 
% loading corners img1 

 
fid=fopen(filecorn1,'r'); 

cp1temp=fscanf(fid,'%f'); 
fclose(fid); 

 
nc1=max(size(cp1temp))/3; 
cp1=reshape(cp1temp,3,nc1)'; 

 
%----------------------------------------------------------- 

 
 

disp('calibration 2st image ................................. done'); 
 

[K2,R2,t2,f2,vp3_2]=homsystem2vp(u0,v0,vp1_2(1),vp1_2(2), .... 
vp2_2(1),vp2_2(2), wa2,wb2,d2); 

 
Xca2=-inv(R2)*t2; H2=K2*[R2(1:3,1) R2(1:3,2) 
t2]; 

 
%--------------------------------------------------------------- 
% loading corners img2 disp('loading corners 1st 

image'); 

fid=fopen(filecorn2,'r'); 
cp2temp=fscanf(fid,'%f'); 

fclose(fid); 
 

nc2=max(size(cp2temp))/3; 
cp2=reshape(cp2temp,3,nc2)'; 

 

File projmatfrompair.m 
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%----------------------------------------------------------- 
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% Finding correspondences using homography of the two images 

 
 

disp('finding correspondences by homography'); H21=H2*inv(H1); 

dmax=(2*u0)^2+(2*v0)^2; 
 

for i=1:nc1, 
cp1(i,3)=0; 
cp1(i,4)=dmax; w1=[cp1(i,1); 
cp1(i,2);1]; 
w2=[(H21(1,1:3)*w1)/(H21(3,1:3)*w1);(H21(2,1:3)*w1)/ (H21(3,1:3)*w1);1]; 
for j=1:nc2, 

w2temp=[cp2(j,1); cp2(j,2);1]; 
dtemp=(w2temp-w2)'*(w2temp-w2); 
if dtemp<cp1(i,4), cp1(i,4)=dtemp; cp1(i,3)=j; end; end; 

end; 
 

k=0; corr=0; for 
i=1:nc1, 

if cp1(i,4)<16, k=k+1; 
corr(k,1:4)=[cp1(i,1),cp1(i,2),cp2(cp1(i,3),1),cp2(cp1(i,3),2)]; end; 

end; 
ncorr=k; 

 
%----------------------------------------------------------- 
%triangulation 

 
Xrec=0; Xrec=triangulation(K1,R1,t1,K2,R2,t2,corr(:,1:2),corr(:,3:4)); 

 
%----------------------------------------------------------- 
%finding least-square solution plane 

 
[Up Dp Vp]=svd([Xrec,ones(ncorr,1)]); a=Vp(1,3); b=Vp(2,3); 
c=Vp(3,3); d=Vp(4,3); 

 
if c<0, a=-a; b=-b; c=-c; d=-d; end; lsplane=[a;b;c;d]; 

%----------------------------------------------------------- 
% H21 improvement 
% inv(K2)*H21*K1 

 
 

disp('homography matrix new estimation'); 

H21sys=zeros(3*ncorr,9+ncorr); 

for i=1:ncorr, j=(i-
1)*3+1; 
w1=[corr(i,1:2) ,1]'; 
w2=[corr(i,3:4) ,1]'; 
H21sys(j:j+2,1:9)=[ w1' 0 0 0 0 0 0; .... 

0 0 0 w1' 0 0 0; .... 
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0 0 0 0 0 0 w1']; 
H21sys(j:j+2,9+i)=-w2; end; 

 
[Uh Dh Vh]=svd(H21sys); 
x=Vh(1:9,9+ncorr); 
H21new=reshape(x',3,3)'; %proportional of H21 

 
%----------------------------------------------------------- 
% (d*R+t*n') scomposition % t proporzionale 
% t21=t21_npo*no'*inv(K1)*w1/d 

disp('homography scomposition'); 

[Uho Dho Vho]=svd(inv(K2)*H21*K1); s1o=Dho(1,1); 
s2o=Dho(2,2); s3o=Dho(3,3); 

 
if ((s1o~=s2o) & (s2o~=s3o)), 

x1o=sqrt((s1o^2-s2o^2)/(s1o^2-s3o^2)); % x2o=0; x3o=sqrt((s2o^2-
s3o^2)/(s1o^2-s3o^2)); 

end; 
 

t21_pp=Uho*(s1o-s3o)*[x1o;0;-x3o]; 
t21_pn=Uho*(s1o-s3o)*[x1o;0;x3o]; 
t21_np=Uho*(s1o-s3o)*[-x1o;0;-x3o]; 
t21_nn=Uho*(s1o-s3o)*[-x1o;0;+x3o]; 

 
t21=t2-R2*inv(R1)*t1; t21norm=t21./t21(1); 
t21_pp_norm=t21_pp./t21_pp(3); 
t21_pn_norm=t21_pn./t21_pn(3); 
t21_np_norm=t21_np./t21_np(3); 
t21_nn_norm=t21_nn./t21_nn(3); 

 
d_pp=(t21norm-t21_pp_norm)'*(t21norm-t21_pp_norm); 
d_pn=(t21norm-t21_pn_norm)'*(t21norm-t21_pn_norm); 
d_np=(t21norm-t21_np_norm)'*(t21norm-t21_np_norm); 
d_nn=(t21norm-t21_nn_norm)'*(t21norm-t21_nn_norm); [mind 
i]=min([d_pp d_pn d_np d_nn]); 

 
if i==1, s_x1o=1; s_x3o=1; t21_new=t21_pp_norm; elseif i==2, s_x1o=1; 

s_x3o=-1; t21_new=t21_pn_norm; 
elseif i==3, s_x1o=-1; s_x3o=1; t21_new=t21_np_norm; else s_x1o=-
1; s_x3o=-1; t21_new=t21_nn_norm; 

end; 
 

sin_po=(s_x1o*s_x3o)*sqrt((s1o^2-s2o^2)*(s2o^2-s3o^2))/ ((s1o+s3o)*s2o); 
cos_po=(s2o^2+s3o*s1o)/((s1o+s3o)*s2o); 

 
Rpo=[cos_po 0 -sin_po; 0 1 0;sin_po 0 cos_po]; 
so=det(Uho)*det(Vho'); R21_new=so*Uho*Rpo*Vho'; 
% no=Vho*[s_x1o*x1o;0;s_x3o*x3o]; 

 
 

%----------------------------------------------------------- 
% Essential matrix and reconstruction 
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disp('essential matrix estimation'); nxm=size(img1); 

R12=R21_new; t12=t21_new;; 
 

T12x=[ 0 -t12(3) t12(2); .... 
t12(3) 0 -t12(1); .... 

-t12(2) t12(1) 0 ]; 
E12=T12x*R12; 

 
 

 

function [K_est,R_est,t_est,f_est,vp3]=homsystem2vp(u0,v0,u1,v1,u2,v2,wa,wb,d); 
 

f_est= sqrt((u0-u1)*(u2-u0)+(v0-v1)*(v2-v0)); K_est=[f_est 0 u0;0 
f_est v0; 0 0 1]; 

 
u10=u1-u0;u20=u2-u0; 
v10=v1-v0;v20=v2-v0; 

 
den=(v20*u10)-(v10*u20); 

 
u3=(v10*(v1*v20+u1*u20)-v20*(v2*v10+u2*u10))/(-den); 
v3=(u10*(u1*u20+v1*v20)-u20*(u2*u10+v2*v10))/den; 

 
vp3=[u3;v3]; 

 
sysA=[ u1 u2 u3; .... 

v1 v2 v3; .... 
1 1 1]; 

b=[u0;v0;1]; 

[U D V]=svd(sysA); 
 

D1=0*D'; 
for i=1:3 if D(i,i)~=0 D1(i,i)=1/D(i,i); end; end; x=V*D1*U'*b; 

 
l1=sqrt(x(1)); 
l2=sqrt(x(2)); 
l3=sqrt(x(3)); 

 
if u1<u0, l1=-l1; end; if v2<v0, 
l2=-l2; end; 

R_est=inv(K_est)*[l1*u1 l2*u2 l3*u3; l1*v1 l2*v2 l3*v3; l1 l2 l3]; if wb(1)<wa(1), d=-d; end; 
Xb_a=[d;0;0]; 

 
%---------------- 
%NOTE: t_est=t+Xa 

 
KRX=K_est*R_est*Xb_a; if 
wa(1)~=wb(1), 

la=(wb(1)*KRX(3)-KRX(1))/(wa(1)-wb(1)); 
else 

la=(wb(2)*KRX(3)-KRX(2))/(wa(2)-wb(2)); 

File homsystem2vp.m 
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end; t_est=la*inv(K_est)*wa; 
 
 
 
 
 

 

function [Xrec]= triangulation(K1,R1,t1,K2,R2,t2,W1,W2); 
 

Wsize=size(W1); 
npoints=Wsize(1); 

bsys=[-K1*t1;-K2*t2]; for 

i=1:npoints, 

Asys=[K1*R1 -[W1(i,1:2),1]' zeros(3,1); .... 
K2*R2 zeros(3,1) -[W2(i,1:2),1]']; 

[U D V]=svd(Asys,0); 
D1=0*D'; 
for j=1:5 if D(j,j)~=0, D1(j,j)=1/D(j,j); end; end; x=V*D1*U'*bsys; 
Xrec(i,1:3)=[x(1),x(2),x(3)]; 

end; 

 
 

% finding exact d and true Xrecs 
 

%A1=zeros(3*npoints,3*npoints); 
%A2=A1; 
%for i=1:npoints, 
% ii=1+npoints*(i-1); 
% A1(ii:ii+2,ii:ii+2)=R1; 
% A2(ii:ii+2,ii:ii+2)=R2; 
% Aa1(ii:ii+2,1)=-t1; 
% Aa2(ii:ii+2,1)=-t2; 
% bsys(ii:ii+2,1)=R1*Xrec(i,1:3)'; 
% bsys(ii+3*npoints:ii+3*npoints+2,1)=R1*Xrec(i,1:3)'; 
%end; 
% 
%Asys=[A1 Aa1; A2 Aa2]; 
% 
%[U D V]=svd(Asys); 
%cond(Asys) 
%[U D V]=svd(Asys,0); 
%D1=0*D'; 
%for j=1:3*npoints if D(j,j)~=0, D1(j,j)=1/D(j,j); end; end; 
%x=V*D1*U'*bsys; 
% 
%for i=1:npoints 
% ii=1+3*(npoints-1); 
% Xrec(i,1:3)=x(ii:ii+2,1)'; 
%end; 

 
 

 

function plottingall(img1,fig1,wa1,wb1,cp1,corr,ncorr) 

File triangulation.m 

File plottingall.m 
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figure(fig1); colormap(gray(255)); image(img1); 
zoom on; hold on; 

 
 

W1=[wa1(1:2,1)';wb1(1:2,1)']; 
%hl=line(W1(:,1),W1(:,2)); 
%set(hl,'Color','Red'); 

 
%plot(cp1(:,1), cp1(:,2), 'xw'); 
%plot(cp1(:,1)+1, cp1(:,2)+1, 'xw'); 

 
plot(corr(:,1), corr(:,2), 'xg'); 
%plot(corr(:,1)+1, corr(:,2)+1, 'xk'); 

 
for i=1:ncorr, ht=text(corr(i,1)+1,corr(i,2)+1,sprintf('%d',i)); 

set(ht,'Color','Red'); 
end; 

 
 

 

function plotrec(fig3,Xrec,Ra1_a3,ta1_a3,Xca1,lab1,Xca2,lab2,plane,lsplane,flag 
) 

 
ncorrtemp=size(Xrec); 
ncorr=ncorrtemp(1); 

 
for i=1:ncorr, Xrecnew(i,1:3)=(Ra1_a3*Xrec(i,1:3)'+ta1_a3)'; 
end; figure(fig3); 

if flag>0, hold on; rotate3d; grid on; end; myplot3(Xrecnew(:,1),Xrecnew(:,2),Xrecnew(:,3),'xb'); 

Xca1new=(Ra1_a3*Xca1+ta1_a3); 
Xca2new=(Ra1_a3*Xca2+ta1_a3); 

 
myplot3(Xca1new(1),Xca1new(2),Xca1new(3),'xr'); 
mytext(Xca1new(1)+1,Xca1new(2)+1,Xca1new(3)+1,lab1) 
myplot3(Xca2new(1),Xca2new(2),Xca2new(3),'xg'); 
mytext(Xca2new(1)+1,Xca2new(2)+1,Xca2new(3)+1,lab2); 

 
 

hl=myline(plane(:,1), plane(:,2), plane(:,3)); set(hl,'color','Red'); 

a=lsplane(1); b=lsplane(2); c=lsplane(3); d=lsplane(4); z1=-

(a*plane(1,1)+b*plane(1,2)+d)/c; 
z2=-(a*plane(2,1)+b*plane(2,2)+d)/c; z3=-
(a*plane(3,1)+b*plane(3,2)+d)/c; z4=-
(a*plane(4,1)+b*plane(4,2)+d)/c; 

 
 

File plotrec.m 

File myplot3.m 
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function myplot3(X,Y,Z,string); plot3(X,Z,-

Y,string); 

 
 

function mytext(X,Y,Z,string); text(X,Z,-

Y,string); 

 
 

function [hl]=myline(X,Y,Z); hl=line(X,Z,-

Y); 

 

 

figmap=8; 
 

R_I=[1 0 0; 0 1 0; 0 0 1]; t_I=[0;0;0]; 
 

building1=[0 0 0; 440 0 0; 440 0 210; 0 0 210; 0 0 0]; 
R_build1_O=[1 0 0;0 1 0;0 0 1]; t_build1_O=[0;0;0]; 
bu1_0=plotonmap(figmap,building1,R_build1_O,t_build1_O,0,0,'Blue','bui ld1'); 

 
building2=[0 0 0; 300 0 0; 300 0 60; 420 0 60; 420 0 200; 

-120 0 200; -120 0 60; 0 0 60; 0 0 0]; 
R_build2_O=[0 0 -1;0 1 0; 1 0 0]; t_build2_O=[-80;0;-400]; 
bu2_0=plotonmap(figmap,building2,R_build2_O,t_build2_O,1,0,'Blue','bui ld2'); 

 
building3=[0 0 0; 180 0 0; 180 0 100; 0 0 100; 0 0 0]; 
R_build3_O=[0 0 -1;0 1 0; 1 0 0]; t_build3_O=[-180;0;25]; 
bu3_0=plotonmap(figmap,building3,R_build3_O,t_build3_O,1,0,'Blue','bui ld3'); 

 
green1=[0 0 0;510 0 0;510 0 340;0 0 340;0 0 0]; 
R_green1_O=[1 0 0;0 1 0; 0 0 1]; t_green1_O=[-70;0;-415]; 
gr1_0=plotonmap(figmap,green1,R_green1_O,t_green1_O,1,0,'Green','green 1'); 

 
green2=[0 0 0;570 0 0;570 0 40;0 0 40;0 0 0]; 
R_green2_O=[1 0 0;0 1 0; 0 0 1]; t_green2_O=[-130;0;-510]; 
gr2_0=plotonmap(figmap,green2,R_green2_O,t_green2_O,1,0,'Green','green 2'); 

 
gates1=[0 0 0;650 0 0;650 0 50; 645 0 50; 645 0 5;0 0 5;0 0 0]; 
R_gates1_O=[1 0 0;0 1 0; 0 0 1]; t_gates1_O=[-140;0;-520]; 
ga1_0=plotonmap(figmap,gates1,R_gates1_O,t_gates1_O,1,0,'Black',''); 

 
gates2=[0 0 0;5 0 0;5 0 500;0 0 500;0 0 0]; 
R_gates2_O=[1 0 0;0 1 0; 0 0 1]; t_gates2_O=[505;0;-420]; 
ga2_0=plotonmap(figmap,gates2,R_gates2_O,t_gates2_O,1,0,'Black',''); 

 
gates3=[0 0 0;5 0 0;5 0 90;-65 0 90; -65 0 85;0 0 85;0 0 0]; 
R_gates3_O=[1 0 0;0 1 0; 0 0 1]; t_gates3_O=[505;0;120]; 

File mytext.m 

File myline.m 

File mapkingparade.m 
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ga3_0=plotonmap(figmap,gates3,R_gates3_O,t_gates3_O,1,0,'Black',''); 
 

plot3(Xca1(1),Xca1(3),0,'bx'); text(Xca1(1)+10,Xca1(3)+10,0,'C1'); 
plot3(Xca2(1),Xca2(3),0,'bx'); text(Xca2(1)+10,Xca2(3)+10,0,'C2'); 
Xca3_a1=Ra1_a3*Xca3+ta1_a3;plot3(Xca3_a1(1),Xca3_a1(3),0,'rx'); 
text(Xca3_a1(1)+10,Xca3_a1(3)+10,0,'C3'); 
Xca4_a1=Ra1_a3*Xca4+ta1_a3;plot3(Xca4_a1(1),Xca4_a1(3),0,'rx'); 
text(Xca4_a1(1)+10,Xca4_a1(3)+10,0,'C4'); 
Xca5_a1=Ra1_a5*Xca5+ta1_a5;plot3(Xca5_a1(1),Xca5_a1(3),0,'gx'); 
text(Xca5_a1(1)+10,Xca5_a1(3)+10,0,'C5'); 
Xca6_a1=Ra1_a5*Xca6+ta1_a5;plot3(Xca6_a1(1),Xca6_a1(3),0,'gx'); 
text(Xca6_a1(1)+10,Xca6_a1(3)+10,0,'C6'); 

 
axis([-300 800 -800 300 0 200]); 

%reprojection map building on images using recovered h. h_build1=180; 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,bu1_0,h_build1,'Blue') 
; 
plotonimage(figimg2,K2,R2,t2,Xca2,Ra1_a1,ta1_a1,bu1_0,h_build1,'Blue') 
; 

 
plotonimage(figimg3,K3,R3,t3,Xca3,Ra1_a3,ta1_a3,bu1_0,h_build1,'Blue') 
; 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,bu1_0,h_build1,'Blue') 
; 

 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,bu1_0,h_build1,'Blue') 
; 

 
h_build2=180; plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,bu2_0,h_build2,'Red'); 

 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,bu2_0,h_build2,'Red'); 

 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,bu2_0,h_build2,'Red'); 
plotonimage(figimg6,K6,R6,t6,Xca6,Ra1_a5,ta1_a5,bu2_0,h_build2,'Red'); 

 
%t_build3_O=[-180;-50;30]; h_build3=230; 
%h_build3=180; 
bu3h_0=bu3_0; 
bu3h_0(:,2)=bu3_0(:,2)-(h_build3-h_build1); 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,bu3h_0,h_build3,'Yello w'); 
plotonimage(figimg2,K2,R2,t2,Xca2,Ra1_a1,ta1_a1,bu3h_0,h_build3,'Yello w'); 

 
plotonimage(figimg3,K3,R3,t3,Xca3,Ra1_a3,ta1_a3,bu3h_0,h_build3,'Yello w'); 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,bu3h_0,h_build3,'Yello w'); 

 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,bu3h_0,h_build3,'Yello w'); 
plotonimage(figimg6,K6,R6,t6,Xca6,Ra1_a5,ta1_a5,bu3h_0,h_build3,'Yello w'); 

 
 

h_green1=0; 
gr1h_0=gr1_0; 
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gr1h_0(:,2)=gr1_0(:,2)-(h_green1-h_build1); 
%R_green1_O=[1 0 0;0 1 0; 0 0 1]; t_green1_O=[-20;0;-420]; 

 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,gr1h_0,h_green1,'Green '); 
plotonimage(figimg2,K2,R2,t2,Xca2,Ra1_a1,ta1_a1,gr1h_0,h_green1,'Green '); 

 
plotonimage(figimg3,K3,R3,t3,Xca3,Ra1_a3,ta1_a3,gr1h_0,h_green1,'Green '); 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,gr1h_0,h_green1,'Green '); 

 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,gr1h_0,h_green1,'Green '); 
plotonimage(figimg6,K6,R6,t6,Xca6,Ra1_a5,ta1_a5,gr1h_0,h_green1,'Green '); 

 
h_green2=0; 
gr2h_0=gr2_0; 
gr2h_0(:,2)=gr2_0(:,2)-(h_green2-h_build1); 

 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,gr2h_0,h_green2,'Green '); 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,gr2h_0,h_green2,'Green '); 
%plotonimage(figimg6,K6,R6,t6,Xca6,Ra1_a5,ta1_a5,gr2h_0,h_green2,'Gree n'); 

 
 

h_gates1=25; 
ga1h_0=ga1_0; 
ga1h_0(:,2)=ga1_0(:,2)-(h_gates1-h_build1); 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,ga1h_0,h_gates1,'White '); 
ga1h2_0=[ga1h_0(1,:);ga1h_0(2,:);[510 150 
-515];ga1h_0(6,:);ga1h_0(1,:)]; 
plotonimage(figimg5,K5,R5,t5,Xca5,Ra1_a5,ta1_a5,ga1h2_0,h_gates1,'Whit e'); 

 
h_gates2=25; 
ga2h_0=ga2_0; 
ga2h_0(:,2)=ga2_0(:,2)-(h_gates2-h_build1); 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,ga2h_0,h_gates2,'White '); 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,ga2h_0,h_gates2,'White '); 
ga2h2_0=ga2h_0;ga2h2_0(1,3)=-220;ga2h2_0(2,3)=-220;ga2h2_0(2,5)=-220; 
plotonimage(figimg3,K3,R3,t3,Xca3,Ra1_a3,ta1_a3,ga2h2_0,h_gates2,'Whit e'); 

 
h_gates3=25; 
ga3h_0=ga3_0; 
ga3h_0(:,2)=ga3_0(:,2)-(h_gates3-h_build1); 
plotonimage(figimg1,K1,R1,t1,Xca1,Ra1_a1,ta1_a1,ga3h_0,h_gates3,'White '); 
plotonimage(figimg2,K2,R2,t2,Xca2,Ra1_a1,ta1_a1,ga3h_0,h_gates3,'White '); 
plotonimage(figimg3,K3,R3,t3,Xca3,Ra1_a3,ta1_a3,ga3h_0,h_gates3,'White '); 
plotonimage(figimg4,K4,R4,t4,Xca4,Ra1_a3,ta1_a3,ga3h_0,h_gates3,'White '); 
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function [object2] = plotonmap(fig,object,R,t,flagfig,flagloop,linecol,label); 

 
 

if flagfig==0, figure(fig); hold on; rotate3d; end; nxm=size(object); 

npoints=nxm(1)-1; 

 
 

for i=1:npoints+1, object2(i,1:3)=(R*object(i,1:3)'+t)'; 
end; 

 
 

if flagloop==0, hl=myline(object2(:,1),object2(:,2),object2(:,3)); 
set(hl,'Color',linecol); x_text=sum(object2(1:npoints,1))/npoints; 
y_text=sum(object2(1:npoints,2))/npoints; 
z_text=sum(object2(1:npoints,3))/npoints; 
mytext(x_text,y_text,z_text,label); 

else 
for i=2:npoints, 

hl=myline(object2(i-1:i,1),object2(i-1:i,2),object2(i-1:i,3)); set(hl,'Color',linecol); 
end; mytext(object2(1,1)+2,object2(1,2)+2,object2(1,3),label); 

end; 
 
 

 

function plotonimage(figimg,K1,R1,t1,Xca1,Ra1_a1,ta1_a1, .... 
building1,h_build1,line_color); 

 
 

figure(figimg); 
 

nxm=size(building1); 
npoints=nxm(1)-1; 

for i=1:npoints+1, building1_h(i,1:3)=[building1(i,1),building1(i,2)+h_build1,building1(i 
,3)]; 

 
building1_0(i,1:3)=(inv(Ra1_a1)*(building1(i,1:3)'-ta1_a1))'; 
building1_h(i,1:3)=(inv(Ra1_a1)*(building1_h(i,1:3)'-ta1_a1))'; 

 
w_0(i,1:3)=(K1*(R1*building1_0(i,1:3)'+t1))'; 
w_0(i,1:3)=w_0(i,1:3)./w_0(i,3); 
w_h(i,1:3)=(K1*(R1*building1_h(i,1:3)'+t1))'; 
w_h(i,1:3)=w_h(i,1:3)./w_h(i,3); end; 

 
hl=line(w_0(:,1),w_0(:,2)); 

File plotonmap.m 

File plotonimage.m 
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set(hl,'Color',line_color); 
 

hl=line(w_h(:,1),w_h(:,2)); 
set(hl,'Color',line_color); 

 
for i=1:npoints, 

hl=line([w_0(i,1) , w_h(i,1) ],[w_0(i,2) , w_h(i,2)]); set(hl,'Color',line_color); 
end; 

 
 

 

P1=K1*([R1*Ra1_a1, t1-R1*Ra1_a1*ta1_a1]); P2=K2*([R2*inv(Ra1_a1), t2-
R2*inv(Ra1_a1)*ta1_a1]); P3=K3*([R3*inv(Ra1_a3), t3-
R3*inv(Ra1_a3)*ta1_a3]); P4=K4*([R4*inv(Ra1_a3), t4-
R4*inv(Ra1_a3)*ta1_a3]); P5=K5*([R5*inv(Ra1_a5), t5-
R5*inv(Ra1_a5)*ta1_a5]); P6=K6*([R6*inv(Ra1_a5), t6-
R6*inv(Ra1_a5)*ta1_a5]); 

 
 

%------------------------------------ 
% Img1 project matrix re-estimation 

 
%point to point correspondences image-map 

 
%wpp1=[; ; 1]; Xpp1=[; 0; 0;1]; 
%wpp2=[; ; 1]; Xpp2=[; 0; 0;1]; 
%wpp3=[; ; 1]; Xpp3=[0;0; 0;1]; 
wpp1=vp1_1; Xpp1=[1; 0; 0;0]; 
wpp2=vp2_1; Xpp2=[0; 1; 0;0]; 

 
Wpp=[wpp1';wpp2']; 
Xpp=[Xpp1';Xpp2']; 

 
%Wpp=[];Xpp=[]; 
Xp0=[P1(1,:)'; P1(2,:)'; P1(3,:)']; 

 
%line to line correspondences image-map 
% L-> aX+bZ+c=0; 
% Y=h; 
wll1=[19 136 52 146]; Xll1=[1 0 140 0]; % X+140=0 
wll2=[43 125 97 143]; Xll2=[1 0 180 -50]; 
wll3=[16 331 546 354]; Xll3=[0 1 415 180]; 
wll4=[14 347 537 375]; Xll4=[0 1 470 180]; 

 
Wll=[wll1;wll2;wll3;wll4]; 
Xll=[Xll1;Xll2;Xll3;Xll4]; 
%Wll=[wll1;wll2]; 
%Xll=[Xll1;Xll2]; 

 

%myfopt=[0 1e-4 1e-4 1e-6 0 0 0 0 0.... 
% 0 0 0 0 0 0 1e-8 0.1 0]; 

%Xp=fmins('funbestP',Xp0,myfopt,[],Wpp,Xpp,Wll,Xll); 
 

myfopt=optimset('Display','iter','TolX',1e-4,'TolFun',1e- 4,'MaxFunEvals',5000,'MaxIter',5000); 
Xp=fminsearch('funbestP',Xp0,myfopt,Wpp,Xpp,Wll,Xll); 

 
P1new=[Xp(1:4)';Xp(5:8)';Xp(9:12)']; 

File mapconstraints.m 
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A=inv(P1new(:,1:3)); [Qa Ra]=qr(A); K1n=inv(Ra)*[-1 
0 0; 0 -1 0; 0 0 1]; 
R1n=[-1 0 0; 0 -1 0; 0 0 1]*inv(Qa); 
t1n=inv(K1n)*P1new(:,4); 
t1n=t1n+R1n*ta1_a1; %note don't change order with next statement R1n=R1n*Ra1_a1; 

 
Xca1n=-inv(R1n)*t1n; 

 
figure(1); colormap(gray(255)); image(img1); hold on; zoom on; 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,bu1_0,h_build1,'Bl ue'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,bu2_0,h_build2,'Re d'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,bu3h_0,h_build3,'Y ellow'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,gr1h_0,h_green1,'G reen'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,gr2h_0,h_green2,'G reen'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,ga2h_0,h_gates2,'W hite'); 
plotonimage(figimg1,K1n,R1n,t1n,Xca1n,Ra1_a1,ta1_a1,ga3h_0,h_gates3,'W hite'); 

 
 

%------------------------------------ 
% Img2 project matrix re-estimation 

 
%point to point correspondences image-map 

 
%wpp1=[; ; 1]; Xpp1=[; 0; 0;1]; 

 
wpp1=vp1_2; Xpp1=[1; 0; 0;0]; 
wpp2=vp2_2; Xpp2=[0; 1; 0;0]; 

 
Wpp=[wpp1';wpp2']; 
Xpp=[Xpp1';Xpp2']; 

 
Xp0=[P2(1,:)'; P2(2,:)'; P2(3,:)']; 

 
%line to line correspondences image-map 
% L-> aX+bZ+c=0; 
% Y=h; 
wll1=[501 330 281 449]; Xll1=[1 0 -440 180]; % X-140=0 greeen1 lateral line gates 
wll2=[8 123 63 142]; Xll2=[1 0 180 -50]; % build 3 roof 
wll3=[501 330 5 301]; Xll3=[0 1 75 180]; % green 1 line near build 
1 
wll4=[66 136 500 88]; Xll4=[0 1 0 0]; % build 1 roof 
wll5=[549 285 526 284]; Xll5=[0 1 -200 150]; % gate 3 
wll6=[523 199 525 296]; Xll6=[0 0 440 200]; % build 1 fac2 far h 

 
%hl=line([wll1(1) wll1(3)],[wll1(2) 
wll1(4)]);set(hl,'Color','Yellow'); 

 
Wll=[wll1;wll2;wll3;wll4;wll5;wll6]; 
Xll=[Xll1;Xll2;Xll3;Xll4;Xll5;Xll6]; 

 
 

%myfopt=[0 1e-4 1e-4 1e-6 0 0 0 0 0 0 0 0 0 0 
0 1e-8 0.1 0]; 
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%Xp=fmins('funbestP',Xp0,myfopt,[],Wpp,Xpp,Wll,Xll); 
 

myfopt=optimset('Display','iter','TolX',1e-4,'TolFun',1e- 4,'MaxFunEvals',5000,'MaxIter',5000) 
Xp=fminsearch('funbestP',Xp0,myfopt,Wpp,Xpp,Wll,Xll); 

 
 

P2new=[Xp(1:4)';Xp(5:8)';Xp(9:12)']; 
 

A=inv(P2new(:,1:3)); [Qa Ra]=qr(A); K2n=inv(Ra)*[-1 
0 0; 0 -1 0; 0 0 1]; 
R2n=[-1 0 0; 0 -1 0; 0 0 1]*inv(Qa); 
t2n=inv(K2n)*P2new(:,4); 
t2n=t2n+R2n*ta1_a1; %note don't change order with next statement R2n=R2n*Ra1_a1; 

 
Xca2n=-inv(R2n)*t2n; 

 
figure(2); colormap(gray(255)); image(img2); hold on; zoom on; 
plotonimage(figimg2,K2n,R2n,t2n,Xca2n,Ra1_a1,ta1_a1,bu1_0,h_build1,'Bl ue'); 
plotonimage(figimg2,K2n,R2n,t2n,Xca2n,Ra1_a1,ta1_a1,bu3h_0,h_build3,'Y ellow'); 
plotonimage(figimg2,K2n,R2n,t2n,Xca2n,Ra1_a1,ta1_a1,gr1h_0,h_green1,'G reen'); 
plotonimage(figimg2,K2n,R2n,t2n,Xca2n,Ra1_a1,ta1_a1,ga3h_0,h_gates3,'W hite'); 

 
 

%------------------------------------ 
% Img4 project matrix re-estimation 

 
%point to point correspondences image-map 

 
%wpp1=[; ; 1]; Xpp1=[; 0; 0;1]; 
%wpp2=[; ; 1]; Xpp2=[; 0; 0;1]; 
%wpp3=[; ; 1]; Xpp3=[0;0; 0;1]; 
wpp1=vp1_4; Xpp1=[0; 0; 1;0]; 
wpp2=vp2_4; Xpp2=[0; 1; 0;0]; 

 
Wpp=[wpp1';wpp2']; 
Xpp=[Xpp1';Xpp2']; 

 
%Wpp=[];Xpp=[]; 
Xp0=[P4(1,:)'; P4(2,:)'; P4(3,:)']; 

 
%line to line correspondences image-map 
% L-> aX+bZ+c=0; 
% Y=h; 

 
wll1=[26 276 19 320]; Xll1=[0 0 -80 -400]; % X=-80; Z=-400; build 2 
fac 1 left ver 
wll2=[2 394 217 421]; Xll2=[1 0 -510 180]; % X-140=0 gate 2 floor 
wll3=[33 251 96 256]; Xll3=[1 0 80 0]; % build 2 roof 
wll4=[166 114 493 119]; Xll4=[1 0 -440 0]; % build 1 fac 2 roof 
wll5=[135 339 166 114]; Xll5=[0 0 440 0]; % build 1 corner fac1 fac 
2 ver 

 
Wll=[wll1;wll2;wll3;wll4;wll5]; 
Xll=[Xll1;Xll2;Xll3;Xll4;Xll5]; 
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%myfopt=[0 1e-4 1e-4 1e-6 0 0 0 0 0.... 
% 0 0 0 0 0 0 1e-8 0.1 0]; 
%Xp=fmins('funbestP',Xp0,myfopt,[],Wpp,Xpp,Wll,Xll); 

 
myfopt=optimset('Display','iter','TolX',1e-4,'TolFun',1e- 4,'MaxFunEvals',5000,'MaxIter',5000); 
Xp=fminsearch('funbestP',Xp0,myfopt,Wpp,Xpp,Wll,Xll); 

 
P4new=[Xp(1:4)';Xp(5:8)';Xp(9:12)']; 

 
A=inv(P4new(:,1:3)); [Qa Ra]=qr(A); K4n=inv(Ra)*[-1 
0 0; 0 -1 0; 0 0 1]; 
R4n=[-1 0 0; 0 -1 0; 0 0 1]*inv(Qa); 
t4n=inv(K4n)*P4new(:,4); 
t4n=t4n+R4n*ta1_a3; %note don't change order with next statement R4n=R4n*Ra1_a3; 

 
Xca4n=-inv(R4n)*t4n; 

 
figure(5); colormap(gray(255)); image(img4); hold on; zoom on; 
plotonimage(figimg4,K4n,R4n,t4n,Xca4n,Ra1_a3,ta1_a3,bu1_0,h_build1,'Bl ue'); 
plotonimage(figimg4,K4n,R4n,t4n,Xca4n,Ra1_a3,ta1_a3,bu2_0,h_build2,'Re d'); 
plotonimage(figimg4,K4n,R4n,t4n,Xca4n,Ra1_a3,ta1_a3,ga2h_0,h_gates2,'W hite'); 
plotonimage(figimg4,K4n,R4n,t4n,Xca4n,Ra1_a3,ta1_a3,ga3h_0,h_gates3,'W hite'); 

 
 

%------------------------------------ 
% Img5 project matrix re-estimation 

 
%point to point correspondences image-map 

 
%wpp1=[; ; 1]; Xpp1=[-80; 180; -400;1]; %p1 
%wpp2=[; ; 1]; Xpp2=[-140; 180; 20;1]; %p2 
wpp1=vp1_5; Xpp6=[0; 0; 1;0]; 
wpp2=vp2_5; Xpp7=[0; 1; 0;0]; 

 
 

%plot(wpp1(1),wpp1(2),'yx'); 

Wpp=[wpp1';wpp2']; 

Xpp=[Xpp1';Xpp2']; 
 

Xp0=[P5(1,:)'; P5(2,:)'; P5(3,:)']; 
 

%line to line correspondences image-map 
% L-> aX+bZ+c=0; 
% Y=h; 
wll1=[477 211 480 294]; Xll1=[0 0 0 0]; % build 1 corner left 
vert 
wll2=[456 283 

 
453 

 
203]; 

 
Xll2=[0 

 
0 

 
-180 200]; 

 
%build 

 
3 

 
corner right 

vert 
wll3=[358 190 

 
359 

 
252]; 

 
Xll3=[0 

 
0 

 
-80 -100]; 

 
%build 

 
2 

 
fac 1 corner 

right vert         

wll4=[438 151 513 160]; Xll4=[1 0 180 -50]; %l4 
%hl=line([wll1(1) wll1(3)],[wll1(2) 
wll1(4)]);set(hl,'Color','Yellow'); 
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Wll=[wll1;wll2;wll3;wll4]; 
Xll=[Xll1;Xll2;Xll3;Xll4]; 

 
myfopt=optimset('Display','iter','TolX',1e-4,'TolFun',1e- 4,'MaxFunEvals',5000,'MaxIter',5000) 
Xp=fminsearch('funbestP',Xp0,myfopt,Wpp,Xpp,Wll,Xll); 

 
P5new=[Xp(1:4)';Xp(5:8)';Xp(9:12)']; 

 
A=inv(P5new(:,1:3)); [Qa Ra]=qr(A); K5n=inv(Ra)*[-1 
0 0; 0 -1 0; 0 0 1]; 
R5n=[-1 0 0; 0 -1 0; 0 0 1]*inv(Qa); 
t5n=inv(K5n)*P5new(:,4); 
t5n=t5n+R5n*ta1_a5; %note don't change order with next statement R5n=R5n*Ra1_a5; 

 
Xca5n=-inv(R5n)*t5n; 

 
figure(6); colormap(gray(255)); image(img5); hold on; zoom on; 
plotonimage(figimg5,K5n,R5n,t5n,Xca5n,Ra1_a5,ta1_a5,bu1_0,h_build1,'Bl ue'); 
plotonimage(figimg5,K5n,R5n,t5n,Xca5n,Ra1_a5,ta1_a5,bu2_0,h_build2,'Re d'); 
plotonimage(figimg5,K5n,R5n,t5n,Xca5n,Ra1_a5,ta1_a5,bu3h_0,h_build3,'Y ellow'); 

 
 

green1b=[0 0 0;490 0 0;490 0 340;0 0 340;0 0 0]; 
R_green1_O=[1 0 0;0 1 0; 0 0 1]; t_green1_O=[-70;0;-415]; 
gr1_0b=plotonmap(figmap,green1b,R_green1_O,t_green1_O,1,0,'Green',''); h_green1b=0; 
gr1h_0b=gr1_0b; gr1h_0b(:,2)=gr1_0b(:,2)-(h_green1b- h_build1); 

 
plotonimage(figimg5,K5n,R5n,t5n,Xca5n,Ra1_a5,ta1_a5,gr1h_0b,h_green1b, 'Green'); 

 
green2b=[0 0 0;270 0 0;270 0 40;0 0 40;0 0 0]; 
R_green2_O=[1 0 0;0 1 0; 0 0 1]; t_green2_O=[-130;0;-510]; 
gr2_0b=plotonmap(figmap,green2b,R_green2_O,t_green2_O,1,0,'Green',''); h_green2b=0; 
gr2h_0b=gr2_0b; gr2h_0b(:,2)=gr2_0b(:,2)-(h_green2b- h_build1); 

 
plotonimage(figimg5,K5n,R5n,t5n,Xca5n,Ra1_a5,ta1_a5,gr2h_0b,h_green2b, 'Green'); 

 
%------------------------------------ 
% Img6 project matrix re-estimation 

%point to point correspondences image-map wpp1=[100; 324; 1];

 Xpp1=[-80; 180; -400;1]; %p1 
wpp2=[466; 318; 1]; Xpp2=[-140; 180; 20;1]; %p2 
wpp3=[527; 320; 1]; Xpp3=[0; 180; 0;1]; %p3 
wpp4=[494; 310; 1]; Xpp4=[-180; 180; 115;1]; %p4 
wpp5=[488; 154; 1]; Xpp5=[-180; -50; 115;1]; %p5 
wpp6=vp1_6; Xpp6=[0; 0; 1;0]; 
wpp7=vp2_6; Xpp7=[0; 1; 0;0]; 

 
 

%plot(wpp1(1),wpp1(2),'yx'); 
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Wpp=[wpp1';wpp2';wpp3';wpp4';wpp5';wpp6';wpp7']; 
Xpp=[Xpp1';Xpp2';Xpp3';Xpp4';Xpp5';Xpp6';Xpp7']; 

 
%Wpp=[wpp6';wpp7']; 
%Xpp=[Xpp6';Xpp7']; 

 
Xp0=[P6(1,:)'; P6(2,:)'; P6(3,:)']; 

 
%line to line correspondences image-map 
% L-> aX+bZ+c=0; 
% Y=h; 
wll1=[1 348 25 327]; Xll1=[0 1 510 180]; %l1 
wll2=[201 445 79 327]; Xll2=[0 1 415 180]; %l2 
wll3=[562 328 438 325]; Xll3=[0 1 75 180]; %l3 
wll4=[438 151 513 160]; Xll4=[1 0 180 -50]; %l4 
%hl=line([wll1(1) wll1(3)],[wll1(2) 
wll1(4)]);set(hl,'Color','Yellow'); 

 
Wll=[wll1;wll2;wll3;wll4]; 
Xll=[Xll1;Xll2;Xll3;Xll4]; 
%Wll=[wll1;wll2;wll3]; 
%Xll=[Xll1;Xll2;Xll3]; 

 
%myfopt=[0 1e-4 1e-4 1e-6 0 0 0 0 0.... 
% 0 0 0 0 0 0 1e-8 0.1 0]; 
%Xp=fmins('funbestP',Xp0,myfopt,[],Wpp,Xpp,Wll,Xll); 

 
myfopt=optimset('Display','iter','TolX',1e-4,'TolFun',1e- 4,'MaxFunEvals',5000,'MaxIter',5000) 
Xp=fminsearch('funbestP',Xp0,myfopt,Wpp,Xpp,Wll,Xll); 

 
P6new=[Xp(1:4)';Xp(5:8)';Xp(9:12)']; 

 
A=inv(P6new(:,1:3)); [Qa Ra]=qr(A); K6n=inv(Ra)*[-1 
0 0; 0 -1 0; 0 0 1]; 
R6n=[-1 0 0; 0 -1 0; 0 0 1]*inv(Qa); 
t6n=inv(K6n)*P6new(:,4); 
t6n=t6n+R6n*ta1_a5; %note don't change order with next statement R6n=R6n*Ra1_a5; 

 
Xca6n=-inv(R6n)*t6n; 

 
figure(7); colormap(gray(255)); image(img6); hold on; zoom on; 
plotonimage(figimg6,K6n,R6n,t6n,Xca6n,Ra1_a5,ta1_a5,bu1_0,h_build1,'Bl ue'); 
plotonimage(figimg6,K6n,R6n,t6n,Xca6n,Ra1_a5,ta1_a5,bu2_0,h_build2,'Re d'); 
plotonimage(figimg6,K6n,R6n,t6n,Xca6n,Ra1_a5,ta1_a5,bu3h_0,h_build3,'Y ellow'); 

 
 

green1b=[0 0 0;490 0 0;490 0 340;0 0 340;0 0 0]; 
R_green1_O=[1 0 0;0 1 0; 0 0 1]; t_green1_O=[-70;0;-415]; 
gr1_0b=plotonmap(figmap,green1b,R_green1_O,t_green1_O,1,0,'Green',''); h_green1b=0; 
gr1h_0b=gr1_0b; gr1h_0b(:,2)=gr1_0b(:,2)-(h_green1b- h_build1); 

 
plotonimage(figimg6,K6n,R6n,t6n,Xca6n,Ra1_a5,ta1_a5,gr1h_0b,h_green1b, 'Green'); 

 
green2b=[0 0 0;270 0 0;270 0 40;0 0 40;0 0 0]; 
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R_green2_O=[1 0 0;0 1 0; 0 0 1]; t_green2_O=[-130;0;-510]; 
gr2_0b=plotonmap(figmap,green2b,R_green2_O,t_green2_O,1,0,'Green',''); h_green2b=0; 
gr2h_0b=gr2_0b; gr2h_0b(:,2)=gr2_0b(:,2)-(h_green2b- h_build1); 

 
plotonimage(figimg6,K6n,R6n,t6n,Xca6n,Ra1_a5,ta1_a5,gr2h_0b,h_green2b, 'Green'); 

 
 
 

%new camera displacemente figure(8); 
plot3(Xca1n(1),Xca1n(3),0,'bx'); 
%text(Xca1n(1)+10,Xca1n(3)+10,0,'C1'); 
plot3(Xca2n(1),Xca2n(3),0,'bx'); 
%text(Xca2n(1)+10,Xca2n(3)+10,0,'C2'); 
%Xca3_a1=Ra1_a3*Xca3+ta1_a3;plot3(Xca3_a1(1),Xca3_a1(3),0,'rx'); 
%text(Xca3_a1(1)+10,Xca3_a1(3)+10,0,'C3'); 
Xca4_a1=Ra1_a3*Xca4n+ta1_a3;plot3(Xca4_a1(1),Xca4_a1(3),0,'rx'); 
%text(Xca4_a1(1)+10,Xca4_a1(3)+10,0,'C4'); 
%Xca5_a1=Ra1_a5*Xca5+ta1_a5;plot3(Xca5_a1(1),Xca5_a1(3),0,'gx'); 
%text(Xca5_a1(1)+10,Xca5_a1(3)+10,0,'C5'); 
Xca6_a1=Ra1_a5*Xca6n+ta1_a5;plot3(Xca6_a1(1),Xca6_a1(3),0,'gx'); 
%text(Xca6_a1(1)+10,Xca6_a1(3)+10,0,'C6'); 

 
 

 

filename='KingsParade.wrl'; 
initvrmlfile(filename); 

 
figure(1); colormap(gray(255)); image(img1); hold on; zoom on; vis=1; 

% punti presi dall'immagine di dimensioni 1/2 
W=[53 128 0.5 101 144 0.5; 91 207 0.5 91 252 0.5; .... 

83 268 0.5 66 268 0.5; 50 220 0.5 50 179 0.5]; 
W=W*2; 
genrectif('texturefA1.ppm','tex_bu3.ppm',W,1125,900,vis); 
%need convertion ppm to jpg 
X=[-180 -50 115 ;-180 -50 205;-180 180 205;-180 180 115]; 
addvrmlfile(filename,X,'tex_bu3.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
W=[6 278 0.5 528 280 0.5; 528 280 0.5 530 441 0.5; 

530 441 0.5 6 389 0.5; 6 389 0.5 6 278 0.5]; W=W*2; 
genrectif('texturefA1.ppm','tex_ga1.ppm',W,1125,900,vis); 

 
X=[-140 150 -520 ;430 150 -520;430 180 -520;-140 180 -520]; 
addvrmlfile(filename,X,'tex_ga1.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
W=[66 136 0.5 500 89 0.5; 503 139 0.5 506 301 0.5; 

76 302 0.5 428 320 0.5; 57 284 0.5 63 172 0.5]; 
W=W*2; 
genrectif('texturefA3.ppm','tex_bu1a.ppm',W,1125,900,vis); 

File gentexture.m 
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X=[0 0 0; 440 0 -0;440 180 0;0 180 0]; 
addvrmlfile(filename,X,'tex_bu1a.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% triangle facade A building 1 
W=[vp1_2(1) vp1_2(2) 0.5 238 94 0.5; vp2_2(1) vp2_2(2) 0.5 319 129 
0.5; 

319 129 0.5 166 144 0.5; 166 144 0.5 vp2_2(1) vp2_2(2) 0.5]; W=W*2; 
genrectif('texturefA3.ppm','tex_bu1b.ppm',W,1125,900,vis); 

 
X=[140 -20 0; 300 -20 0;300 20 0;140 20 0]; 
addvrmlfile(filename,X,'tex_bu1b.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% green1/green2 texture 
W=[205 335 0.5 250 335 0.5; 250 335 0.5 250 380 0.5; 

250 380 0.5 205 380 0.5; 205 380 0.5 205 335 0.5]; 
W=W*2; 
genrectif('texturefA3.ppm','tex_gr1.ppm',W,1125,900,vis); 

 
% green1 
X=[-70 180 -415; 440 180 -415;440 180 -75;-70 180 -75]; 
addvrmlfile(filename,X,'tex_gr1.jpg',100); 
% green2 
X=[-130 180 -510; 440 180 -510;440 180 -470;-130 180 -470]; 
addvrmlfile(filename,X,'tex_gr1.jpg',100); 

 
 
 

% punti presi dall'immagine di dimensioni 1/2 
% facade 2 building1 
W=[166 114 0.5 493 119 0.5; 494 224 0.5 493 373 0.5; 

319 412 0.5 288 409 0.5; 153 209 0.5 135 339 0.5]; 
W=W*2; 
genrectif('texturefB2.ppm','tex_bu1c.ppm',W,1125,900,vis); 

 
X=[440 0 0; 440 0 210; 440 180 210; 440 180 0]; 
addvrmlfile(filename,X,'tex_bu1c.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% triangle facade 2 building 1 
W=[vp1_4(1) vp1_4(2) 0.5 322 80 0.5; vp2_4(1) vp2_4(2) 0.5 458 149 
0.5; 

458 149 0.5 188 142 0.5; 188 142 0.5 vp2_4(1) vp2_4(2) 0.5]; W=W*2; 
genrectif('texturefB2.ppm','tex_bu1d.ppm',W,1125,900,vis); 

 
X=[440 -20 25; 440 -20 185; 440 20 185;440 20 25]; 
addvrmlfile(filename,X,'tex_bu1d.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% gate 3 
W=[351 369 0.5 479 377 0.5; 510 448 0.5 511 426 0.5; 

510 448 0.5 347 445 0.5; 323 374 0.5 319 444 0.5]; 
W=W*2; 
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genrectif('texturefB2.ppm','tex_ga3.ppm',W,1125,900,vis); 
 

X=[510 150 120; 510 150 210; 510 180 210; 510 180 120]; 
addvrmlfile(filename,X,'tex_ga3.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% gate 2 
W=[8 328 0.5 331 343 0.5; 370 381 0.5 370 353 0.5; 

291 405 0.5 38 411 0.5; 8 328 0.5 8 379 0.5]; 
W=W*2; 
genrectif('texturefB1.ppm','tex_ga2.ppm',W,1125,900,vis); 

 
X=[510 150 -420; 510 150 80; 510 180 80; 510 180 -420]; 
addvrmlfile(filename,X,'tex_ga2.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% facade 1 building2 
W=[112 109 0.5 344 148 0.5; 358 193 0.5 359 250 0.5; 

361 315 0.5 240 320 0.5; 89 178 0.5 88 230 0.5]; 
W=W*2; 
genrectif('texturefC1.ppm','tex_bu2a.ppm',W,1125,900,vis); 

 
X=[-80 0 -400; -80 0 -100; -80 180 -100;-80 180 -400]; 
addvrmlfile(filename,X,'tex_bu2a.jpg',1) 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% facades b/e building2 
W=[77 119 0.5 91 108 0.5; 89 178 0.5 88 230 0.5; 

88 325 0.5 67 319 0.5; 71 186 0.5 70 234 0.5]; 
W=W*2; 
genrectif('texturefC1.ppm','tex_bu2e.ppm',W,1125,900,vis); 

 
%fac b 
X=[-140 0 -100; -80 0 -100; -80 180 -100;-140 

 
180 

 
-100]; 

addvrmlfile(filename,X,'tex_bu2e.jpg',1) 
%fac e 
X=[-140 0 -400; -80 0 -400; -80 180 -400;-140 

 
 
180 

 
 
-400]; 

addvrmlfile(filename,X,'tex_bu2e.jpg',1)   

 
% punti presi dall'immagine di dimensioni 1/2 
% facades c building2 
W=[366 165 0.5 400 170 0.5; 403 216 0.5 404 

 
 

250 

 
 

0.5; 
406 310 0.5 371 312 0.5; 362 316 0.5 361 261 0.5]; 

W=W*2; 
genrectif('texturefC1.ppm','tex_bu2c.ppm',W,1125,900,vis); 

 
X=[-140 0 -40; -140 0 20; -140 180 20;-140 180 -40]; 
addvrmlfile(filename,X,'tex_bu2c.jpg',1); 

 
 

% punti presi dall'immagine di dimensioni 1/2 
% facades d building2 
W=[ 1 136 0.5 99 143 0.5; 100 201 0.5 99 245 0.5; 

92 322 0.5 13 321 0.5; 9 212 0.5 8 240 0.5]; 
W=W*2; 
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genrectif('texturefC3.ppm','tex_bu2d.ppm',W,1125,900,vis); 
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X=[-140 0 -505; -140 0 -400; -140 180 -400;-140 180 -505]; 
addvrmlfile(filename,X,'tex_bu2d.jpg',1); 

 
 

 

function initvrmlfile(filename); 
 

fid = fopen(filename,'w'); fprintf(fid,'#VRML V1.0 
ascii\n'); fprintf(fid,'#My Example\n'); 

 
fclose(fid); 

return; 

 

 

function genrectif(filein,fileout,W,w,h,vis); 
 

% lines from pairs of points l=zeros(5,3); 
for i=1:4; Asys=[W(i,1:3);W(i,4:6)]; 

[U D V]=svd(Asys); 
l(i+1,1:3)=V(1:3,3)'; 

end; 
l(1,1:3)= l(5,1:3); 

 
% line intersection 
W2=zeros(4,3); 
for i=1:4; Asys=[l(i,1:3);l(i+1,1:3)]; 

[U D V]=svd(Asys); 
W2(i,1:3)=V(1:3,3)'; 
W2(i,1:3)=W2(i,1:3)./W2(i,3); 

end; 
 

Wrect=[1 1 1; w 1 1; w h 1 ; 1 h 1]; 

% homgraphy recovery 

Asys=zeros(12,13); for i=1:4, 
j=(i-1)*3+1; 
Asys(j:j+2,1:9)=[W2(i,1:3) 0 0 0 0 0 0;.... 

0 0 0 W2(i,1:3) 0 0 0;.... 
0 0 0 0 0 0 W2(i,1:3)]; 

Asys(j:j+2,10+i-1)=-Wrect(i,1:3)'; end; 
 

[U D V]=svd(Asys); 
Hrect=(reshape(V(1:9,13),3,3))'; 
Hrectinv=inv(Hrect); 

 
Hrectinv=Hrectinv; 
command=sprintf('rectification %s %f %f %f %f %f %f %f %f %f %s', filein, .... 

Hrectinv(1,1),Hrectinv(1,2),Hrectinv(1,3),... 

File initvrmlfile.m 

File genrectif.m 
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Hrectinv(2,1),Hrectinv(2,2),Hrectinv(2,3),... 
Hrectinv(3,1),Hrectinv(3,2),Hrectinv(3,3),fileout); 

unix(command); 
 

if vis~=0, 
command2=sprintf('xv %s &',fileout); 
unix(command2); 

end; 

return; 

 

 

function addvrmlfile(filename,Xrec,texfilename,k); fid = 

fopen(filename,'a'); 

fprintf(fid,'#VRML V1.0 ascii\n'); fprintf(fid,'#My 
Example\n'); 

 
triangles=[1 2 3; 3 4 1]; 
corr=[0 1*k; 1*k 1*k; 1*k 0; 0 0]; 

 
for i=1:2, 

i1=triangles(i,1); i2=triangles(i,2); i3=triangles(i,3); Tvect(i,1:9)=[Xrec(i1,1) Xrec(i1,2)
 Xrec(i1,3) .... 

Xrec(i2,1) Xrec(i2,2) Xrec(i2,3) .... 
Xrec(i3,1) Xrec(i3,2) Xrec(i3,3) ]; 

textvect=[corr(i1,1) corr(i1,2) .... 
corr(i2,1) corr(i2,2) .... 
corr(i3,1) corr(i3,2)]; 

 
fprintf(fid,'\n'); 
fprintf(fid,'Separator\n'); 
fprintf(fid,'{\n'); 
fprintf(fid,' Coordinate3 {\n'); 
fprintf(fid,'  point [\n'); 
fprintf(fid,' %f %f %f,\n',Tvect(i,1),Tvect(i,2),Tvect(i,3)); 
fprintf(fid,' %f %f %f,\n',Tvect(i,4),Tvect(i,5),Tvect(i,6)); 
fprintf(fid,'  %f %f %f \n',Tvect(i,7),Tvect(i,8),Tvect(i,9)); fprintf(fid,' ]\n'); 
fprintf(fid,' }\n'); 
fprintf(fid,'\n'); fprintf(fid,' Texture2 {\n'); 
fprintf(fid,'  filename %s\n',texfilename); fprintf(fid,'
 }\n'); 
fprintf(fid,'\n'); 
fprintf(fid,' TextureCoordinate2 {\n'); 
fprintf(fid,'  point [\n'); 

 
 

fprintf(fid,' %f %f,\n',textvect(1),textvect(2)); fprintf(fid,' %f 
%f,\n',textvect(3),textvect(4)); fprintf(fid,' %f %f,\n',textvect(5),textvect(6)); 

 
 

fprintf(fid,' ]\n'); 
fprintf(fid,' }\n'); 
fprintf(fid,'\n'); 
fprintf(fid,' IndexedFaceSet {\n'); fprintf(fid,' 
 coordIndex [2, 1, 0, -1,]\n'); 

File addvrmlfile.m 
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fprintf(fid,' }\n'); 
 

fprintf(fid,' }\n'); 
end; 
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